SiC和GaN功率晶体管在硬开关和软开关条件下的开关能量评估

Ke Li, Paul L. Evans, Mark C. Johnson
{"title":"SiC和GaN功率晶体管在硬开关和软开关条件下的开关能量评估","authors":"Ke Li, Paul L. Evans, Mark C. Johnson","doi":"10.1109/WIPDA.2016.7799922","DOIUrl":null,"url":null,"abstract":"SiC and GaN power transistors switching energy are compared in this paper. In order to compare switching energy Esw of the same power rating device, a theoretical analysis is given to compare SiC device conduction loss and switching losses change when device maximal blocking voltage reduces by half. After that, Esw of a 650V GaN-HEMT is measured in hard switching condition and is compared with that of a 1200V SiC-MOSFET and a 650V SiC-MOSFET with the same current rating, in which it is shown that Esw of a GaN-HEMT is smaller than a 1200V SiC-MOSFET, which is smaller than 650V SiC-MOSFET. Following by that, in order to reduce device turn-ON switching energy, a zero voltage switching circuit is used to evaluate all the devices. Device output capacitance stored energy Eoss are measured and turn-OFF switching losses are obtained by subtracting Eoss, which shows that GaN-HEMT is sill better than SiC device in terms of switching losses and 1200V SiC-MOSFET has smaller switching losses than 650V SiC-MOSFET.","PeriodicalId":431347,"journal":{"name":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","volume":"117 21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"SiC and GaN power transistors switching energy evaluation in hard and soft switching conditions\",\"authors\":\"Ke Li, Paul L. Evans, Mark C. Johnson\",\"doi\":\"10.1109/WIPDA.2016.7799922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SiC and GaN power transistors switching energy are compared in this paper. In order to compare switching energy Esw of the same power rating device, a theoretical analysis is given to compare SiC device conduction loss and switching losses change when device maximal blocking voltage reduces by half. After that, Esw of a 650V GaN-HEMT is measured in hard switching condition and is compared with that of a 1200V SiC-MOSFET and a 650V SiC-MOSFET with the same current rating, in which it is shown that Esw of a GaN-HEMT is smaller than a 1200V SiC-MOSFET, which is smaller than 650V SiC-MOSFET. Following by that, in order to reduce device turn-ON switching energy, a zero voltage switching circuit is used to evaluate all the devices. Device output capacitance stored energy Eoss are measured and turn-OFF switching losses are obtained by subtracting Eoss, which shows that GaN-HEMT is sill better than SiC device in terms of switching losses and 1200V SiC-MOSFET has smaller switching losses than 650V SiC-MOSFET.\",\"PeriodicalId\":431347,\"journal\":{\"name\":\"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"volume\":\"117 21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIPDA.2016.7799922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2016.7799922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文对SiC和GaN功率晶体管的开关能量进行了比较。为了比较相同额定功率器件的开关能量Esw,对器件最大阻断电压降低一半时SiC器件的导通损耗和开关损耗的变化进行了理论分析。然后,在硬开关条件下测量了650V GaN-HEMT的Esw,并与相同额定值的1200V SiC-MOSFET和650V SiC-MOSFET进行了比较,结果表明,GaN-HEMT的Esw小于1200V SiC-MOSFET,而1200V SiC-MOSFET的Esw小于650V SiC-MOSFET。然后,为了降低器件的导通开关能量,采用零电压开关电路对所有器件进行评估。测量器件输出电容储能损耗,减去损耗得到关断开关损耗,表明GaN-HEMT在开关损耗方面仍优于SiC器件,且1200V SiC- mosfet的开关损耗小于650V SiC- mosfet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SiC and GaN power transistors switching energy evaluation in hard and soft switching conditions
SiC and GaN power transistors switching energy are compared in this paper. In order to compare switching energy Esw of the same power rating device, a theoretical analysis is given to compare SiC device conduction loss and switching losses change when device maximal blocking voltage reduces by half. After that, Esw of a 650V GaN-HEMT is measured in hard switching condition and is compared with that of a 1200V SiC-MOSFET and a 650V SiC-MOSFET with the same current rating, in which it is shown that Esw of a GaN-HEMT is smaller than a 1200V SiC-MOSFET, which is smaller than 650V SiC-MOSFET. Following by that, in order to reduce device turn-ON switching energy, a zero voltage switching circuit is used to evaluate all the devices. Device output capacitance stored energy Eoss are measured and turn-OFF switching losses are obtained by subtracting Eoss, which shows that GaN-HEMT is sill better than SiC device in terms of switching losses and 1200V SiC-MOSFET has smaller switching losses than 650V SiC-MOSFET.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信