{"title":"双子座:一个非侵入式,能量收集的真正的能量计","authors":"Bradford Campbell, P. Dutta","doi":"10.1109/RTSS.2014.36","DOIUrl":null,"url":null,"abstract":"Power meters are critical for sub metering loads in residential and commercial settings, but high installation cost and complexity hamper their broader adoption. Recent approaches address installation burdens by proposing non-invasive meters that easily clip onto a wire, or stick onto a circuit breaker, to perform contact less metering. Unfortunately, these designs require regular maintenance (e.g. Battery replacement) or reduce measurement accuracy (e.g. Work poorly with non-unity power factors). This paper presents Gemini, a new design point in the power metering space. Gemini addresses the drawbacks of prior approaches by decoupling and distributing the AC voltage and current measurement acquisitions, and recombining them wirelessly using a low-bandwidth approach, to offer non-invasive real, reactive, and apparent power metering. Battery maintenance is eliminated by using an energy-harvesting design that enables the meter to power itself using a current transformer. Accuracy is substantially improved over other non-invasive meters by virtualizing the voltage channel -- effectively allowing the meter to calculate power as if it could directly measure voltage (since true power requires sample-by-sample multiplication of current and voltage measurements acquired with tight timing constraints). Collectively, these improvements result in a new design point that meters resistive loads with 0.6 W average error and a range of reactive and switching loads with 2.2 W average error -- matching commercial, mains-powered solutions.","PeriodicalId":353167,"journal":{"name":"2014 IEEE Real-Time Systems Symposium","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Gemini: A Non-invasive, Energy-Harvesting True Power Meter\",\"authors\":\"Bradford Campbell, P. Dutta\",\"doi\":\"10.1109/RTSS.2014.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power meters are critical for sub metering loads in residential and commercial settings, but high installation cost and complexity hamper their broader adoption. Recent approaches address installation burdens by proposing non-invasive meters that easily clip onto a wire, or stick onto a circuit breaker, to perform contact less metering. Unfortunately, these designs require regular maintenance (e.g. Battery replacement) or reduce measurement accuracy (e.g. Work poorly with non-unity power factors). This paper presents Gemini, a new design point in the power metering space. Gemini addresses the drawbacks of prior approaches by decoupling and distributing the AC voltage and current measurement acquisitions, and recombining them wirelessly using a low-bandwidth approach, to offer non-invasive real, reactive, and apparent power metering. Battery maintenance is eliminated by using an energy-harvesting design that enables the meter to power itself using a current transformer. Accuracy is substantially improved over other non-invasive meters by virtualizing the voltage channel -- effectively allowing the meter to calculate power as if it could directly measure voltage (since true power requires sample-by-sample multiplication of current and voltage measurements acquired with tight timing constraints). Collectively, these improvements result in a new design point that meters resistive loads with 0.6 W average error and a range of reactive and switching loads with 2.2 W average error -- matching commercial, mains-powered solutions.\",\"PeriodicalId\":353167,\"journal\":{\"name\":\"2014 IEEE Real-Time Systems Symposium\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Real-Time Systems Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSS.2014.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2014.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gemini: A Non-invasive, Energy-Harvesting True Power Meter
Power meters are critical for sub metering loads in residential and commercial settings, but high installation cost and complexity hamper their broader adoption. Recent approaches address installation burdens by proposing non-invasive meters that easily clip onto a wire, or stick onto a circuit breaker, to perform contact less metering. Unfortunately, these designs require regular maintenance (e.g. Battery replacement) or reduce measurement accuracy (e.g. Work poorly with non-unity power factors). This paper presents Gemini, a new design point in the power metering space. Gemini addresses the drawbacks of prior approaches by decoupling and distributing the AC voltage and current measurement acquisitions, and recombining them wirelessly using a low-bandwidth approach, to offer non-invasive real, reactive, and apparent power metering. Battery maintenance is eliminated by using an energy-harvesting design that enables the meter to power itself using a current transformer. Accuracy is substantially improved over other non-invasive meters by virtualizing the voltage channel -- effectively allowing the meter to calculate power as if it could directly measure voltage (since true power requires sample-by-sample multiplication of current and voltage measurements acquired with tight timing constraints). Collectively, these improvements result in a new design point that meters resistive loads with 0.6 W average error and a range of reactive and switching loads with 2.2 W average error -- matching commercial, mains-powered solutions.