{"title":"相对反射对称的钍面","authors":"Чо Ми Сон, Jongbaek Song","doi":"10.4213/tm4296","DOIUrl":null,"url":null,"abstract":"Пусть $W$ - группа, порожденная отражениями на плоскости, и $P$ - рациональный многоугольник, инвариантный относительно действия группы $W$. Действие группы $W$ на $P$ индуцирует ее действие на торическом многообразии $X_P$, ассоциированном с $P$. В работе изучается представление группы $W$ на кольце когомологий $H^*(X_P)$. Показано, что инвариантное подкольцо $H^*(X_P)^W$ изоморфно кольцу когомологий торического многообразия, ассоциированного с фундаментальной областью $P/W$. В качестве примера дается явное описание основного результата в случае торического многообразия, ассоциированного с веером камер Вейля типа $G_2$.","PeriodicalId":134662,"journal":{"name":"Trudy Matematicheskogo Instituta imeni V.A. Steklova","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Торические поверхности, симметричные относительно отражений\",\"authors\":\"Чо Ми Сон, Jongbaek Song\",\"doi\":\"10.4213/tm4296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Пусть $W$ - группа, порожденная отражениями на плоскости, и $P$ - рациональный многоугольник, инвариантный относительно действия группы $W$. Действие группы $W$ на $P$ индуцирует ее действие на торическом многообразии $X_P$, ассоциированном с $P$. В работе изучается представление группы $W$ на кольце когомологий $H^*(X_P)$. Показано, что инвариантное подкольцо $H^*(X_P)^W$ изоморфно кольцу когомологий торического многообразия, ассоциированного с фундаментальной областью $P/W$. В качестве примера дается явное описание основного результата в случае торического многообразия, ассоциированного с веером камер Вейля типа $G_2$.\",\"PeriodicalId\":134662,\"journal\":{\"name\":\"Trudy Matematicheskogo Instituta imeni V.A. Steklova\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trudy Matematicheskogo Instituta imeni V.A. Steklova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/tm4296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trudy Matematicheskogo Instituta imeni V.A. Steklova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/tm4296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Торические поверхности, симметричные относительно отражений
Пусть $W$ - группа, порожденная отражениями на плоскости, и $P$ - рациональный многоугольник, инвариантный относительно действия группы $W$. Действие группы $W$ на $P$ индуцирует ее действие на торическом многообразии $X_P$, ассоциированном с $P$. В работе изучается представление группы $W$ на кольце когомологий $H^*(X_P)$. Показано, что инвариантное подкольцо $H^*(X_P)^W$ изоморфно кольцу когомологий торического многообразия, ассоциированного с фундаментальной областью $P/W$. В качестве примера дается явное описание основного результата в случае торического многообразия, ассоциированного с веером камер Вейля типа $G_2$.