Jehwan Oh, Z. Borbora, Dhruv Sharma, J. Srivastava
{"title":"基于mmorpg社交互动的Bot检测","authors":"Jehwan Oh, Z. Borbora, Dhruv Sharma, J. Srivastava","doi":"10.1109/SocialCom.2013.81","DOIUrl":null,"url":null,"abstract":"The objective of this work is to detect the use of automated programs, known as game bots, based on social interactions in MMORPGs. Online games, especially MMORPGs, have become extremely popular among internet users in the recent years. Not only the popularity but also security threats such as the use of game bots and identity theft have grown manifold. As bot players can obtain unjustified assets without corresponding efforts, the gaming community does not allow players to use game bots. However, the task of identifying game bots is not an easy one because of the velocity and variety of their evolution in mimicking human behavior. Existing methods for detecting game bots have a few drawbacks like reducing immersion of players, low detection accuracy rate, and collision with other security programs. We propose a novel method for detecting game bots based on the fact that humans and game bots tend to form their social network in contrasting ways. In this work we focus particularly on the in game mentoring network from amongst several social networks. We construct a couple of new features based on eigenvector centrality to capture this intuition and establish their importance for detecting game bots. The results show a significant increase in the classification accuracy of various classifiers with the introduction of these features.","PeriodicalId":129308,"journal":{"name":"2013 International Conference on Social Computing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Bot Detection Based on Social Interactions in MMORPGs\",\"authors\":\"Jehwan Oh, Z. Borbora, Dhruv Sharma, J. Srivastava\",\"doi\":\"10.1109/SocialCom.2013.81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this work is to detect the use of automated programs, known as game bots, based on social interactions in MMORPGs. Online games, especially MMORPGs, have become extremely popular among internet users in the recent years. Not only the popularity but also security threats such as the use of game bots and identity theft have grown manifold. As bot players can obtain unjustified assets without corresponding efforts, the gaming community does not allow players to use game bots. However, the task of identifying game bots is not an easy one because of the velocity and variety of their evolution in mimicking human behavior. Existing methods for detecting game bots have a few drawbacks like reducing immersion of players, low detection accuracy rate, and collision with other security programs. We propose a novel method for detecting game bots based on the fact that humans and game bots tend to form their social network in contrasting ways. In this work we focus particularly on the in game mentoring network from amongst several social networks. We construct a couple of new features based on eigenvector centrality to capture this intuition and establish their importance for detecting game bots. The results show a significant increase in the classification accuracy of various classifiers with the introduction of these features.\",\"PeriodicalId\":129308,\"journal\":{\"name\":\"2013 International Conference on Social Computing\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Social Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SocialCom.2013.81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SocialCom.2013.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bot Detection Based on Social Interactions in MMORPGs
The objective of this work is to detect the use of automated programs, known as game bots, based on social interactions in MMORPGs. Online games, especially MMORPGs, have become extremely popular among internet users in the recent years. Not only the popularity but also security threats such as the use of game bots and identity theft have grown manifold. As bot players can obtain unjustified assets without corresponding efforts, the gaming community does not allow players to use game bots. However, the task of identifying game bots is not an easy one because of the velocity and variety of their evolution in mimicking human behavior. Existing methods for detecting game bots have a few drawbacks like reducing immersion of players, low detection accuracy rate, and collision with other security programs. We propose a novel method for detecting game bots based on the fact that humans and game bots tend to form their social network in contrasting ways. In this work we focus particularly on the in game mentoring network from amongst several social networks. We construct a couple of new features based on eigenvector centrality to capture this intuition and establish their importance for detecting game bots. The results show a significant increase in the classification accuracy of various classifiers with the introduction of these features.