{"title":"不确定非线性系统的精确可达性分析","authors":"M. Rungger, Majid Zamani","doi":"10.1145/3178126.3178127","DOIUrl":null,"url":null,"abstract":"We propose an algorithm to over-approximate the reachable set of nonlinear systems with bounded, time-varying parameters and uncertain initial conditions. The algorithm is based on the conservative representation of the nonlinear dynamics by a differential inclusion consisting of a linear term and the Minkowsky sum of two convex sets. The linear term and one of the two sets are obtained by a conservative first-order over-approximation of the nonlinear dynamics with respect to the system state. The second set accounts for the effect of the time-varying parameters. A distinctive feature of the novel algorithm is the possibility to over-approximate the reachable set to any desired accuracy by appropriately choosing the parameters in the computation. We provide an example that illustrates the effectiveness of our approach.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Accurate reachability analysis of uncertain nonlinear systems\",\"authors\":\"M. Rungger, Majid Zamani\",\"doi\":\"10.1145/3178126.3178127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an algorithm to over-approximate the reachable set of nonlinear systems with bounded, time-varying parameters and uncertain initial conditions. The algorithm is based on the conservative representation of the nonlinear dynamics by a differential inclusion consisting of a linear term and the Minkowsky sum of two convex sets. The linear term and one of the two sets are obtained by a conservative first-order over-approximation of the nonlinear dynamics with respect to the system state. The second set accounts for the effect of the time-varying parameters. A distinctive feature of the novel algorithm is the possibility to over-approximate the reachable set to any desired accuracy by appropriately choosing the parameters in the computation. We provide an example that illustrates the effectiveness of our approach.\",\"PeriodicalId\":131076,\"journal\":{\"name\":\"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3178126.3178127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178126.3178127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accurate reachability analysis of uncertain nonlinear systems
We propose an algorithm to over-approximate the reachable set of nonlinear systems with bounded, time-varying parameters and uncertain initial conditions. The algorithm is based on the conservative representation of the nonlinear dynamics by a differential inclusion consisting of a linear term and the Minkowsky sum of two convex sets. The linear term and one of the two sets are obtained by a conservative first-order over-approximation of the nonlinear dynamics with respect to the system state. The second set accounts for the effect of the time-varying parameters. A distinctive feature of the novel algorithm is the possibility to over-approximate the reachable set to any desired accuracy by appropriately choosing the parameters in the computation. We provide an example that illustrates the effectiveness of our approach.