{"title":"基于Kullback-Leibler散度的电力系统早期异常检测及因子模型分析","authors":"Qing Feng, G. Radman, Xuebin Li","doi":"10.11648/J.EPES.20211004.12","DOIUrl":null,"url":null,"abstract":"Real-time anomaly detection is a critical monitoring task for power systems. Most studies of power network detection fail to identify small fault signals or disturbances that might lead to damages or system-wide blackout. This work presents a methodology for analyzing high-dimensional PMU data and detecting early events for large-scale power systems in a non-Gaussian noise environment. Also, spatio-temporal correlations of PMU data are explored and determined by the factor model for anomaly detection. Based on random matrix theory, the factor model monitors the variation of spatio-temporal correlations in PMU data and estimates the number of dynamic factors. Kullback-Leibler Divergence is employed to measure the deviation between two spectral distributions: the empirical spectral distribution of the covariance matrix of residuals from online monitoring data and its theoretical spectral distribution determined by the factor model. Using IEEE 57-bus, IEEE 118-bus, and Polish 2383-bus systems, three different case studies demonstrate that the proposed method is more effective in identifying early-stage anomalies in high-dimensional PMU data collected from large-scale power networks. Performance evaluations validate that this method is sensitive and robust to small fault signals compared with other statistical approaches. The proposed method is a data-driven approach that doesn’t require any prior knowledge of the topology of power networks.","PeriodicalId":125088,"journal":{"name":"American Journal of Electrical Power and Energy Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early Anomaly Detection for Power Systems Based on Kullback-Leibler Divergence Using Factor Model Analysis\",\"authors\":\"Qing Feng, G. Radman, Xuebin Li\",\"doi\":\"10.11648/J.EPES.20211004.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time anomaly detection is a critical monitoring task for power systems. Most studies of power network detection fail to identify small fault signals or disturbances that might lead to damages or system-wide blackout. This work presents a methodology for analyzing high-dimensional PMU data and detecting early events for large-scale power systems in a non-Gaussian noise environment. Also, spatio-temporal correlations of PMU data are explored and determined by the factor model for anomaly detection. Based on random matrix theory, the factor model monitors the variation of spatio-temporal correlations in PMU data and estimates the number of dynamic factors. Kullback-Leibler Divergence is employed to measure the deviation between two spectral distributions: the empirical spectral distribution of the covariance matrix of residuals from online monitoring data and its theoretical spectral distribution determined by the factor model. Using IEEE 57-bus, IEEE 118-bus, and Polish 2383-bus systems, three different case studies demonstrate that the proposed method is more effective in identifying early-stage anomalies in high-dimensional PMU data collected from large-scale power networks. Performance evaluations validate that this method is sensitive and robust to small fault signals compared with other statistical approaches. The proposed method is a data-driven approach that doesn’t require any prior knowledge of the topology of power networks.\",\"PeriodicalId\":125088,\"journal\":{\"name\":\"American Journal of Electrical Power and Energy Systems\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Electrical Power and Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.EPES.20211004.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Electrical Power and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.EPES.20211004.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Early Anomaly Detection for Power Systems Based on Kullback-Leibler Divergence Using Factor Model Analysis
Real-time anomaly detection is a critical monitoring task for power systems. Most studies of power network detection fail to identify small fault signals or disturbances that might lead to damages or system-wide blackout. This work presents a methodology for analyzing high-dimensional PMU data and detecting early events for large-scale power systems in a non-Gaussian noise environment. Also, spatio-temporal correlations of PMU data are explored and determined by the factor model for anomaly detection. Based on random matrix theory, the factor model monitors the variation of spatio-temporal correlations in PMU data and estimates the number of dynamic factors. Kullback-Leibler Divergence is employed to measure the deviation between two spectral distributions: the empirical spectral distribution of the covariance matrix of residuals from online monitoring data and its theoretical spectral distribution determined by the factor model. Using IEEE 57-bus, IEEE 118-bus, and Polish 2383-bus systems, three different case studies demonstrate that the proposed method is more effective in identifying early-stage anomalies in high-dimensional PMU data collected from large-scale power networks. Performance evaluations validate that this method is sensitive and robust to small fault signals compared with other statistical approaches. The proposed method is a data-driven approach that doesn’t require any prior knowledge of the topology of power networks.