基于条件深度卷积生成对抗网络的离线手写签名认证

David C. Yonekura, Elloá B. Guedes
{"title":"基于条件深度卷积生成对抗网络的离线手写签名认证","authors":"David C. Yonekura, Elloá B. Guedes","doi":"10.5753/eniac.2021.18277","DOIUrl":null,"url":null,"abstract":"Handwritten signature authentication systems are important in many real world scenarios to avoid frauds. Thanks to Deep Learning, state-of-art solutions have been proposed to this problem by making use of Convolutional Neural Networks, but other models in this Machine Learning subarea are still to be further explored. In this perspective, the present article introduces a Conditional Deep Convolutional Generative Adversarial Networks (cDCGAN) approach whose experimental results in a realistic dataset with skilled forgeries have Equal Error Rate (EER) of 18.53% and balanced accuracy of 87.91%. These results validate a writerdependent cDCGAN-based solution to the signature authentication problem in a real world scenario where no forgeries are available nor required in training time.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Offline Handwritten Signature Authentication with Conditional Deep Convolutional Generative Adversarial Networks\",\"authors\":\"David C. Yonekura, Elloá B. Guedes\",\"doi\":\"10.5753/eniac.2021.18277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Handwritten signature authentication systems are important in many real world scenarios to avoid frauds. Thanks to Deep Learning, state-of-art solutions have been proposed to this problem by making use of Convolutional Neural Networks, but other models in this Machine Learning subarea are still to be further explored. In this perspective, the present article introduces a Conditional Deep Convolutional Generative Adversarial Networks (cDCGAN) approach whose experimental results in a realistic dataset with skilled forgeries have Equal Error Rate (EER) of 18.53% and balanced accuracy of 87.91%. These results validate a writerdependent cDCGAN-based solution to the signature authentication problem in a real world scenario where no forgeries are available nor required in training time.\",\"PeriodicalId\":318676,\"journal\":{\"name\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2021.18277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

手写签名身份验证系统在许多真实场景中非常重要,可以避免欺诈。由于深度学习,利用卷积神经网络提出了最先进的解决方案来解决这个问题,但机器学习子领域的其他模型仍有待进一步探索。从这个角度来看,本文介绍了一种条件深度卷积生成对抗网络(cDCGAN)方法,该方法在具有熟练伪造的现实数据集中的实验结果具有相等错误率(EER)为18.53%,平衡准确率为87.91%。这些结果验证了一个依赖于写入器的基于cdcgan的签名身份验证问题的解决方案,该解决方案在真实的场景中没有伪造,也不需要在培训时间内进行伪造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Offline Handwritten Signature Authentication with Conditional Deep Convolutional Generative Adversarial Networks
Handwritten signature authentication systems are important in many real world scenarios to avoid frauds. Thanks to Deep Learning, state-of-art solutions have been proposed to this problem by making use of Convolutional Neural Networks, but other models in this Machine Learning subarea are still to be further explored. In this perspective, the present article introduces a Conditional Deep Convolutional Generative Adversarial Networks (cDCGAN) approach whose experimental results in a realistic dataset with skilled forgeries have Equal Error Rate (EER) of 18.53% and balanced accuracy of 87.91%. These results validate a writerdependent cDCGAN-based solution to the signature authentication problem in a real world scenario where no forgeries are available nor required in training time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信