{"title":"基于32nm SOI CMOS技术的新型差分8T位元64kb多阈值SRAM阵列","authors":"Samira Ataei, J. Stine","doi":"10.1109/S3S.2016.7804388","DOIUrl":null,"url":null,"abstract":"An 8T SRAM bitcell is presented to improve the read stability and writability of SRAM in scaled technologies and low voltages. The presented bitcell achieves a faster access time by increasing the read current by 21% compared to a 6T bitcell. The proposed 8T bitcell utilizes a differential operation, single port and one wordline, therefore, it does not require any architectural changes from 6T SRAM architectures. Moreover, the effects of process-induced VTH variations in multi-threshold 8T bitcells are examined and it is shown that the choice for the best dual-threshold configuration of the proposed 8T bitcell varies due to trade-offs between access time, leakage-power and read/write stability under process variations. In addition, timing variations of the sense \"amplifier enable signal\" due to random process variations is reduced by using a Multi Replica Bitline Delay technique to decrease SRAM read access time. The proposed 8T bitcell is demonstrated in a 64 kb SRAM array in 32 nm SOI CMOS technology that operates at 2 GHz at 0.9 V and 250 MHz at 0.3 V.","PeriodicalId":145660,"journal":{"name":"2016 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A 64 kb multi-threshold SRAM array with novel differential 8T bitcell in 32 nm SOI CMOS technology\",\"authors\":\"Samira Ataei, J. Stine\",\"doi\":\"10.1109/S3S.2016.7804388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An 8T SRAM bitcell is presented to improve the read stability and writability of SRAM in scaled technologies and low voltages. The presented bitcell achieves a faster access time by increasing the read current by 21% compared to a 6T bitcell. The proposed 8T bitcell utilizes a differential operation, single port and one wordline, therefore, it does not require any architectural changes from 6T SRAM architectures. Moreover, the effects of process-induced VTH variations in multi-threshold 8T bitcells are examined and it is shown that the choice for the best dual-threshold configuration of the proposed 8T bitcell varies due to trade-offs between access time, leakage-power and read/write stability under process variations. In addition, timing variations of the sense \\\"amplifier enable signal\\\" due to random process variations is reduced by using a Multi Replica Bitline Delay technique to decrease SRAM read access time. The proposed 8T bitcell is demonstrated in a 64 kb SRAM array in 32 nm SOI CMOS technology that operates at 2 GHz at 0.9 V and 250 MHz at 0.3 V.\",\"PeriodicalId\":145660,\"journal\":{\"name\":\"2016 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/S3S.2016.7804388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S3S.2016.7804388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 64 kb multi-threshold SRAM array with novel differential 8T bitcell in 32 nm SOI CMOS technology
An 8T SRAM bitcell is presented to improve the read stability and writability of SRAM in scaled technologies and low voltages. The presented bitcell achieves a faster access time by increasing the read current by 21% compared to a 6T bitcell. The proposed 8T bitcell utilizes a differential operation, single port and one wordline, therefore, it does not require any architectural changes from 6T SRAM architectures. Moreover, the effects of process-induced VTH variations in multi-threshold 8T bitcells are examined and it is shown that the choice for the best dual-threshold configuration of the proposed 8T bitcell varies due to trade-offs between access time, leakage-power and read/write stability under process variations. In addition, timing variations of the sense "amplifier enable signal" due to random process variations is reduced by using a Multi Replica Bitline Delay technique to decrease SRAM read access time. The proposed 8T bitcell is demonstrated in a 64 kb SRAM array in 32 nm SOI CMOS technology that operates at 2 GHz at 0.9 V and 250 MHz at 0.3 V.