基于Haar-Like特征和HOG特征的行人检测方法

Xin Yuan, Xiaosen Shan, Li Su
{"title":"基于Haar-Like特征和HOG特征的行人检测方法","authors":"Xin Yuan, Xiaosen Shan, Li Su","doi":"10.1109/ISA.2011.5873387","DOIUrl":null,"url":null,"abstract":"Considering the simplicity and fast training speed of Haar-like features, the high detecting precision of HOG features, a combined method is proposed on the basis of the two features. Several rectangular features which can describe local human characteristics based on original features are added. The combined method can retain the precision of HOG features and increase the speed of detection at the same time. The experiments have shown this method can detect the pedestrians quickly and effectively with high precision.","PeriodicalId":128163,"journal":{"name":"2011 3rd International Workshop on Intelligent Systems and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A Combined Pedestrian Detection Method Based on Haar-Like Features and HOG Features\",\"authors\":\"Xin Yuan, Xiaosen Shan, Li Su\",\"doi\":\"10.1109/ISA.2011.5873387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the simplicity and fast training speed of Haar-like features, the high detecting precision of HOG features, a combined method is proposed on the basis of the two features. Several rectangular features which can describe local human characteristics based on original features are added. The combined method can retain the precision of HOG features and increase the speed of detection at the same time. The experiments have shown this method can detect the pedestrians quickly and effectively with high precision.\",\"PeriodicalId\":128163,\"journal\":{\"name\":\"2011 3rd International Workshop on Intelligent Systems and Applications\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 3rd International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISA.2011.5873387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISA.2011.5873387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

考虑到类哈尔特征训练简单、速度快、HOG特征检测精度高的特点,提出了一种基于类哈尔特征和HOG特征的组合方法。在原始特征的基础上,增加了几个能够描述局部人类特征的矩形特征。该组合方法在保持HOG特征精度的同时,提高了检测速度。实验表明,该方法能够快速有效地检测出行人,具有较高的检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Combined Pedestrian Detection Method Based on Haar-Like Features and HOG Features
Considering the simplicity and fast training speed of Haar-like features, the high detecting precision of HOG features, a combined method is proposed on the basis of the two features. Several rectangular features which can describe local human characteristics based on original features are added. The combined method can retain the precision of HOG features and increase the speed of detection at the same time. The experiments have shown this method can detect the pedestrians quickly and effectively with high precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信