面向无线传感器网络大数据的HDAC高维数据聚合控制算法

Zeyu Sun, Xiaohui Ji
{"title":"面向无线传感器网络大数据的HDAC高维数据聚合控制算法","authors":"Zeyu Sun, Xiaohui Ji","doi":"10.4018/IJITWE.2017100105","DOIUrl":null,"url":null,"abstract":"The process of high-dimensional data is a hot research area in data mining technology. Due to sparsity of the high-dimensional data, there is significant difference between the high-dimensional space and the low-dimensional space, especially in terms of the data process. Many sophisticated algorithms of low-dimensional space cannot achieve the expected effect, even cannot be used in the high-dimensional space. Thus, this paper proposes a High-dimensional Data Aggregation Control Algorithm for Big Data (HDAC). The algorithm uses information to eliminate the dimension not matching with the specified requirements. Then it uses the principal components method to analyze the rest dimension. Thus, the simplest method is used to reduce the calculation of dimensionality reduction as can as it possible. In the process of data aggregation, the self-adaptive data aggregation mechanism is used to reduce the phenomenon of network delay. Finally, the simulation shows that the algorithm can improve the performance of node energy-consumption, rate of the data post-back and the data delay.","PeriodicalId":222340,"journal":{"name":"Int. J. Inf. Technol. Web Eng.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"HDAC High-Dimensional Data Aggregation Control Algorithm for Big Data in Wireless Sensor Networks\",\"authors\":\"Zeyu Sun, Xiaohui Ji\",\"doi\":\"10.4018/IJITWE.2017100105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of high-dimensional data is a hot research area in data mining technology. Due to sparsity of the high-dimensional data, there is significant difference between the high-dimensional space and the low-dimensional space, especially in terms of the data process. Many sophisticated algorithms of low-dimensional space cannot achieve the expected effect, even cannot be used in the high-dimensional space. Thus, this paper proposes a High-dimensional Data Aggregation Control Algorithm for Big Data (HDAC). The algorithm uses information to eliminate the dimension not matching with the specified requirements. Then it uses the principal components method to analyze the rest dimension. Thus, the simplest method is used to reduce the calculation of dimensionality reduction as can as it possible. In the process of data aggregation, the self-adaptive data aggregation mechanism is used to reduce the phenomenon of network delay. Finally, the simulation shows that the algorithm can improve the performance of node energy-consumption, rate of the data post-back and the data delay.\",\"PeriodicalId\":222340,\"journal\":{\"name\":\"Int. J. Inf. Technol. Web Eng.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Technol. Web Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJITWE.2017100105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Web Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJITWE.2017100105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

高维数据处理是数据挖掘技术中的一个研究热点。由于高维数据的稀疏性,高维空间与低维空间之间存在着显著的差异,特别是在数据处理方面。许多复杂的低维空间算法不能达到预期的效果,甚至不能用于高维空间。为此,本文提出了一种面向大数据的高维数据聚合控制算法(HDAC)。该算法利用信息剔除不符合规定要求的维度。然后利用主成分法对剩余维度进行分析。因此,采用最简单的方法,尽可能减少降维的计算。在数据聚合过程中,采用自适应数据聚合机制,减少网络时延现象。最后,仿真结果表明,该算法可以提高节点能耗、数据回发率和数据延迟性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HDAC High-Dimensional Data Aggregation Control Algorithm for Big Data in Wireless Sensor Networks
The process of high-dimensional data is a hot research area in data mining technology. Due to sparsity of the high-dimensional data, there is significant difference between the high-dimensional space and the low-dimensional space, especially in terms of the data process. Many sophisticated algorithms of low-dimensional space cannot achieve the expected effect, even cannot be used in the high-dimensional space. Thus, this paper proposes a High-dimensional Data Aggregation Control Algorithm for Big Data (HDAC). The algorithm uses information to eliminate the dimension not matching with the specified requirements. Then it uses the principal components method to analyze the rest dimension. Thus, the simplest method is used to reduce the calculation of dimensionality reduction as can as it possible. In the process of data aggregation, the self-adaptive data aggregation mechanism is used to reduce the phenomenon of network delay. Finally, the simulation shows that the algorithm can improve the performance of node energy-consumption, rate of the data post-back and the data delay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信