LaminarIR:结构化流的编译时队列

Yousun Ko, Bernd Burgstaller, Bernhard Scholz
{"title":"LaminarIR:结构化流的编译时队列","authors":"Yousun Ko, Bernd Burgstaller, Bernhard Scholz","doi":"10.1145/2737924.2737994","DOIUrl":null,"url":null,"abstract":"Stream programming languages employ FIFO (first-in, first-out) semantics to model data channels between producers and consumers. A FIFO data channel stores tokens in a buffer that is accessed indirectly via read- and write-pointers. This indirect token-access decouples a producer’s write-operations from the read-operations of the consumer, thereby making dataflow implicit. For a compiler, indirect token-access obscures data-dependencies, which renders standard optimizations ineffective and impacts stream program performance negatively. In this paper we propose a transformation for structured stream programming languages such as StreamIt that shifts FIFO buffer management from run-time to compile-time and eliminates splitters and joiners, whose task is to distribute and merge streams. To show the effectiveness of our lowering transformation, we have implemented a StreamIt to C compilation framework. We have developed our own intermediate representation (IR) called LaminarIR, which facilitates the transformation. We report on the enabling effect of the LaminarIR on LLVM’s optimizations, which required the conversion of several standard StreamIt benchmarks from static to randomized input, to prevent computation of partial results at compile-time. We conducted our experimental evaluation on the Intel i7-2600K, AMD Opteron 6378, Intel Xeon Phi 3120A and ARM Cortex-A15 platforms. Our LaminarIR reduces data-communication on average by 35.9% and achieves platform-specific speedups between 3.73x and 4.98x over StreamIt. We reduce memory accesses by more than 60% and achieve energy savings of up to 93.6% on the Intel i7-2600K.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"LaminarIR: compile-time queues for structured streams\",\"authors\":\"Yousun Ko, Bernd Burgstaller, Bernhard Scholz\",\"doi\":\"10.1145/2737924.2737994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stream programming languages employ FIFO (first-in, first-out) semantics to model data channels between producers and consumers. A FIFO data channel stores tokens in a buffer that is accessed indirectly via read- and write-pointers. This indirect token-access decouples a producer’s write-operations from the read-operations of the consumer, thereby making dataflow implicit. For a compiler, indirect token-access obscures data-dependencies, which renders standard optimizations ineffective and impacts stream program performance negatively. In this paper we propose a transformation for structured stream programming languages such as StreamIt that shifts FIFO buffer management from run-time to compile-time and eliminates splitters and joiners, whose task is to distribute and merge streams. To show the effectiveness of our lowering transformation, we have implemented a StreamIt to C compilation framework. We have developed our own intermediate representation (IR) called LaminarIR, which facilitates the transformation. We report on the enabling effect of the LaminarIR on LLVM’s optimizations, which required the conversion of several standard StreamIt benchmarks from static to randomized input, to prevent computation of partial results at compile-time. We conducted our experimental evaluation on the Intel i7-2600K, AMD Opteron 6378, Intel Xeon Phi 3120A and ARM Cortex-A15 platforms. Our LaminarIR reduces data-communication on average by 35.9% and achieves platform-specific speedups between 3.73x and 4.98x over StreamIt. We reduce memory accesses by more than 60% and achieve energy savings of up to 93.6% on the Intel i7-2600K.\",\"PeriodicalId\":104101,\"journal\":{\"name\":\"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2737924.2737994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737924.2737994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

流编程语言采用先进先出(FIFO)语义对生产者和消费者之间的数据通道进行建模。FIFO数据通道将令牌存储在通过读写指针间接访问的缓冲区中。这种间接的令牌访问将生产者的写操作与消费者的读操作解耦,从而使数据流隐式化。对于编译器,间接的令牌访问模糊了数据依赖性,这使得标准优化无效,并对流程序性能产生负面影响。在本文中,我们提出了结构化流编程语言(如StreamIt)的转换,将FIFO缓冲区管理从运行时转移到编译时,并消除了拆分器和join器,其任务是分发和合并流。为了显示降低转换的有效性,我们实现了一个从StreamIt到C的编译框架。我们已经开发了自己的中间表示(IR),称为LaminarIR,它促进了转换。我们报告了LaminarIR对LLVM优化的启用效果,这需要将几个标准StreamIt基准从静态转换为随机输入,以防止在编译时计算部分结果。我们在Intel i7-2600K、AMD Opteron 6378、Intel Xeon Phi 3120A和ARM Cortex-A15平台上进行了实验评估。我们的LaminarIR平均减少了35.9%的数据通信,并且在StreamIt上实现了3.73到4.98倍的平台特定加速。我们在英特尔i7-2600K上减少了超过60%的内存访问,并实现了高达93.6%的节能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LaminarIR: compile-time queues for structured streams
Stream programming languages employ FIFO (first-in, first-out) semantics to model data channels between producers and consumers. A FIFO data channel stores tokens in a buffer that is accessed indirectly via read- and write-pointers. This indirect token-access decouples a producer’s write-operations from the read-operations of the consumer, thereby making dataflow implicit. For a compiler, indirect token-access obscures data-dependencies, which renders standard optimizations ineffective and impacts stream program performance negatively. In this paper we propose a transformation for structured stream programming languages such as StreamIt that shifts FIFO buffer management from run-time to compile-time and eliminates splitters and joiners, whose task is to distribute and merge streams. To show the effectiveness of our lowering transformation, we have implemented a StreamIt to C compilation framework. We have developed our own intermediate representation (IR) called LaminarIR, which facilitates the transformation. We report on the enabling effect of the LaminarIR on LLVM’s optimizations, which required the conversion of several standard StreamIt benchmarks from static to randomized input, to prevent computation of partial results at compile-time. We conducted our experimental evaluation on the Intel i7-2600K, AMD Opteron 6378, Intel Xeon Phi 3120A and ARM Cortex-A15 platforms. Our LaminarIR reduces data-communication on average by 35.9% and achieves platform-specific speedups between 3.73x and 4.98x over StreamIt. We reduce memory accesses by more than 60% and achieve energy savings of up to 93.6% on the Intel i7-2600K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信