通过压缩子空间解Lur'e方程

Timo Reis
{"title":"通过压缩子空间解Lur'e方程","authors":"Timo Reis","doi":"10.1109/CCCA.2011.6031202","DOIUrl":null,"url":null,"abstract":"We consider the so-called Lur'e matrix equations that arise e.g. in linear-quadratic infinite time horizon optimal control. We characterize the set of solutions in terms of deflating subspaces of even matrix pencils. In particular, it is shown that there exist solutions which are extremal in terms of definiteness. It is shown how these special solutions can be constructed deflating subspaces of even matrix pencils.","PeriodicalId":259067,"journal":{"name":"2011 International Conference on Communications, Computing and Control Applications (CCCA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution of Lur'e equations via deflating subspaces\",\"authors\":\"Timo Reis\",\"doi\":\"10.1109/CCCA.2011.6031202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the so-called Lur'e matrix equations that arise e.g. in linear-quadratic infinite time horizon optimal control. We characterize the set of solutions in terms of deflating subspaces of even matrix pencils. In particular, it is shown that there exist solutions which are extremal in terms of definiteness. It is shown how these special solutions can be constructed deflating subspaces of even matrix pencils.\",\"PeriodicalId\":259067,\"journal\":{\"name\":\"2011 International Conference on Communications, Computing and Control Applications (CCCA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Communications, Computing and Control Applications (CCCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCCA.2011.6031202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communications, Computing and Control Applications (CCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCCA.2011.6031202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在线性二次无限时间范围最优控制中出现的所谓Lur'e矩阵方程。我们用偶矩阵铅笔的压缩子空间来描述解的集合。特别地,证明了存在确定性极值的解。给出了这些特殊解如何构造偶矩阵铅笔的压缩子空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution of Lur'e equations via deflating subspaces
We consider the so-called Lur'e matrix equations that arise e.g. in linear-quadratic infinite time horizon optimal control. We characterize the set of solutions in terms of deflating subspaces of even matrix pencils. In particular, it is shown that there exist solutions which are extremal in terms of definiteness. It is shown how these special solutions can be constructed deflating subspaces of even matrix pencils.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信