S. Suryavanshi, G. Yeric, Max Irby, X. M. Huang, G. Rosendale, L. Shifren
{"title":"极端温度(bbb200°C),辐射强度(>mrad),密度(低于50nm CD),快速(2ns写入脉冲),非易失性存储器技术","authors":"S. Suryavanshi, G. Yeric, Max Irby, X. M. Huang, G. Rosendale, L. Shifren","doi":"10.1109/IMW52921.2022.9779251","DOIUrl":null,"url":null,"abstract":"We have developed an ultra-dense (sub-50 nm device diameter), ultra-fast (2 ns write pulse), non-polar, non-volatile memory that can operate at > 200°C temperatures while being immune to radiation (> 1 Mrad (SiO2)). Our technology, CeRAM, is integrated into the back-end-of-line (BEOL) 1 kb arrays and is compatible with high-temperature substrates including SiC, GaN, as well as Silicon on insulator (SOI). CeRAM can retain its memory state at 400°C for one hour bake. Such characteristics are ideal for multiple applications that include automotive, industrial mining and drilling, as well as defense and space.","PeriodicalId":132074,"journal":{"name":"2022 IEEE International Memory Workshop (IMW)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extreme Temperature (> 200 °C), Radiation Hard (> 1 Mrad), Dense (sub-50 nm CD), Fast (2 ns write pulses), Non-Volatile Memory Technology\",\"authors\":\"S. Suryavanshi, G. Yeric, Max Irby, X. M. Huang, G. Rosendale, L. Shifren\",\"doi\":\"10.1109/IMW52921.2022.9779251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed an ultra-dense (sub-50 nm device diameter), ultra-fast (2 ns write pulse), non-polar, non-volatile memory that can operate at > 200°C temperatures while being immune to radiation (> 1 Mrad (SiO2)). Our technology, CeRAM, is integrated into the back-end-of-line (BEOL) 1 kb arrays and is compatible with high-temperature substrates including SiC, GaN, as well as Silicon on insulator (SOI). CeRAM can retain its memory state at 400°C for one hour bake. Such characteristics are ideal for multiple applications that include automotive, industrial mining and drilling, as well as defense and space.\",\"PeriodicalId\":132074,\"journal\":{\"name\":\"2022 IEEE International Memory Workshop (IMW)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Memory Workshop (IMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMW52921.2022.9779251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW52921.2022.9779251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extreme Temperature (> 200 °C), Radiation Hard (> 1 Mrad), Dense (sub-50 nm CD), Fast (2 ns write pulses), Non-Volatile Memory Technology
We have developed an ultra-dense (sub-50 nm device diameter), ultra-fast (2 ns write pulse), non-polar, non-volatile memory that can operate at > 200°C temperatures while being immune to radiation (> 1 Mrad (SiO2)). Our technology, CeRAM, is integrated into the back-end-of-line (BEOL) 1 kb arrays and is compatible with high-temperature substrates including SiC, GaN, as well as Silicon on insulator (SOI). CeRAM can retain its memory state at 400°C for one hour bake. Such characteristics are ideal for multiple applications that include automotive, industrial mining and drilling, as well as defense and space.