Tornheim双zeta函数的边界

Takashi Nakamura
{"title":"Tornheim双zeta函数的边界","authors":"Takashi Nakamura","doi":"10.1090/bproc/142","DOIUrl":null,"url":null,"abstract":"<p>In the present paper, we give bounds for the Tornheim double zeta function <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T left-parenthesis s 1 comma s 2 comma s 3 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>T</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>s</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>s</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>s</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">T(s_1,s_2,s_3)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue t 1 EndAbsoluteValue comma StartAbsoluteValue t 2 EndAbsoluteValue comma StartAbsoluteValue t 3 EndAbsoluteValue greater-than-or-equal-to 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">|<!-- | --></mml:mo>\n <mml:msub>\n <mml:mi>t</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">|<!-- | --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">|<!-- | --></mml:mo>\n <mml:msub>\n <mml:mi>t</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">|<!-- | --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">|<!-- | --></mml:mo>\n <mml:msub>\n <mml:mi>t</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">|<!-- | --></mml:mo>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lvert t_1 \\rvert , \\lvert t_2 \\rvert , \\lvert t_3 \\rvert \\ge 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue t 1 plus t 2 EndAbsoluteValue comma StartAbsoluteValue t 2 plus t 3 EndAbsoluteValue comma StartAbsoluteValue t 3 plus t 1 EndAbsoluteValue greater-than-or-equal-to 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">|<!-- | --></mml:mo>\n <mml:msub>\n <mml:mi>t</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>+</mml:mo>\n <mml:msub>\n <mml:mi>t</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">|<!-- | --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">|<!-- | --></mml:mo>\n <mml:msub>\n <mml:mi>t</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>+</mml:mo>\n <mml:msub>\n <mml:mi>t</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">|<!-- | --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">|<!-- | --></mml:mo>\n <mml:msub>\n <mml:mi>t</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msub>\n <mml:mo>+</mml:mo>\n <mml:msub>\n <mml:mi>t</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">|<!-- | --></mml:mo>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lvert t_1 + t_2 \\rvert , \\lvert t_2 + t_3 \\rvert , \\lvert t_3 + t_1 \\rvert \\ge 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue t 1 plus t 2 plus t 3 EndAbsoluteValue greater-than-or-equal-to 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">|<!-- | --></mml:mo>\n <mml:msub>\n <mml:mi>t</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>+</mml:mo>\n <mml:msub>\n <mml:mi>t</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>+</mml:mo>\n <mml:msub>\n <mml:mi>t</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">|<!-- | --></mml:mo>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lvert t_1 + t_2 + t_3 \\rvert \\ge 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma 1 comma sigma 2 comma sigma 3 greater-than negative upper K\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msub>\n <mml:mo>></mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>K</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\sigma _1 , \\sigma _2, \\sigma _3 > -K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma 1 plus sigma 2 comma sigma 2 plus sigma 3 comma sigma 3 plus sigma 1 greater-than 1 minus upper K\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>+</mml:mo>\n <mml:msub>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>+</mml:mo>\n <mml:msub>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msub>\n <mml:mo>+</mml:mo>\n <mml:msub>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>K</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\sigma _1 +\\sigma _2, \\sigma _2 + \\sigma _3, \\sigma _3 + \\sigma _1 > 1-K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a positive integer, from bounds for the Hurwitz zeta function which are shown by Bourgain’s bounds for exponential sums.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds for the Tornheim double zeta function\",\"authors\":\"Takashi Nakamura\",\"doi\":\"10.1090/bproc/142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present paper, we give bounds for the Tornheim double zeta function <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T left-parenthesis s 1 comma s 2 comma s 3 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>T</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>s</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>s</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>s</mml:mi>\\n <mml:mn>3</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">T(s_1,s_2,s_3)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> when <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartAbsoluteValue t 1 EndAbsoluteValue comma StartAbsoluteValue t 2 EndAbsoluteValue comma StartAbsoluteValue t 3 EndAbsoluteValue greater-than-or-equal-to 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">|<!-- | --></mml:mo>\\n <mml:msub>\\n <mml:mi>t</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">|<!-- | --></mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">|<!-- | --></mml:mo>\\n <mml:msub>\\n <mml:mi>t</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">|<!-- | --></mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">|<!-- | --></mml:mo>\\n <mml:msub>\\n <mml:mi>t</mml:mi>\\n <mml:mn>3</mml:mn>\\n </mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">|<!-- | --></mml:mo>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lvert t_1 \\\\rvert , \\\\lvert t_2 \\\\rvert , \\\\lvert t_3 \\\\rvert \\\\ge 1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartAbsoluteValue t 1 plus t 2 EndAbsoluteValue comma StartAbsoluteValue t 2 plus t 3 EndAbsoluteValue comma StartAbsoluteValue t 3 plus t 1 EndAbsoluteValue greater-than-or-equal-to 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">|<!-- | --></mml:mo>\\n <mml:msub>\\n <mml:mi>t</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>+</mml:mo>\\n <mml:msub>\\n <mml:mi>t</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">|<!-- | --></mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">|<!-- | --></mml:mo>\\n <mml:msub>\\n <mml:mi>t</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo>+</mml:mo>\\n <mml:msub>\\n <mml:mi>t</mml:mi>\\n <mml:mn>3</mml:mn>\\n </mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">|<!-- | --></mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">|<!-- | --></mml:mo>\\n <mml:msub>\\n <mml:mi>t</mml:mi>\\n <mml:mn>3</mml:mn>\\n </mml:msub>\\n <mml:mo>+</mml:mo>\\n <mml:msub>\\n <mml:mi>t</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">|<!-- | --></mml:mo>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lvert t_1 + t_2 \\\\rvert , \\\\lvert t_2 + t_3 \\\\rvert , \\\\lvert t_3 + t_1 \\\\rvert \\\\ge 1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartAbsoluteValue t 1 plus t 2 plus t 3 EndAbsoluteValue greater-than-or-equal-to 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">|<!-- | --></mml:mo>\\n <mml:msub>\\n <mml:mi>t</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>+</mml:mo>\\n <mml:msub>\\n <mml:mi>t</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo>+</mml:mo>\\n <mml:msub>\\n <mml:mi>t</mml:mi>\\n <mml:mn>3</mml:mn>\\n </mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">|<!-- | --></mml:mo>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lvert t_1 + t_2 + t_3 \\\\rvert \\\\ge 1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma 1 comma sigma 2 comma sigma 3 greater-than negative upper K\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mn>3</mml:mn>\\n </mml:msub>\\n <mml:mo>></mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>K</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma _1 , \\\\sigma _2, \\\\sigma _3 > -K</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma 1 plus sigma 2 comma sigma 2 plus sigma 3 comma sigma 3 plus sigma 1 greater-than 1 minus upper K\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>+</mml:mo>\\n <mml:msub>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo>+</mml:mo>\\n <mml:msub>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mn>3</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mn>3</mml:mn>\\n </mml:msub>\\n <mml:mo>+</mml:mo>\\n <mml:msub>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>></mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>K</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma _1 +\\\\sigma _2, \\\\sigma _2 + \\\\sigma _3, \\\\sigma _3 + \\\\sigma _1 > 1-K</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\">\\n <mml:semantics>\\n <mml:mi>K</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a positive integer, from bounds for the Hurwitz zeta function which are shown by Bourgain’s bounds for exponential sums.</p>\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了Tornheim双zeta函数T(s1, s2, s3) T(s_1,s_2,s_3)当| T 1 |, | T 2 |, | T 3 |≥1 \lvert t_1 \rvert, \lvert t_2 \rvert,\lvert t_3 \rvert\ge 1, | t 1 + t 2 |, | t 2 + t 3 |, | t 3 + t 1 |≥1 \lvert t_1 + t_2 \rvert, \lvert t_2 + t_3 \rvert,\lvert t_3 + t_1 \rvert\ge 1和| t1 + t2 + t3 |≥1 \lvert t_1 + t2 + t3 \rvert\ge 1 with σ 1, σ 2, σ 3 >−K \sigma _1, \sigma _2,\sigma _3 > -K和σ 1 + σ 2, σ 2 + σ 3, σ 3 + σ 1 > 1−K \sigma _1 + \sigma _2, \sigma _2 + \sigma _3, \sigma _3 + \sigma _1 > 1-K,其中K K为正整数,由指数和的布尔甘边界所显示的Hurwitz zeta函数的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds for the Tornheim double zeta function

In the present paper, we give bounds for the Tornheim double zeta function T ( s 1 , s 2 , s 3 ) T(s_1,s_2,s_3) when | t 1 | , | t 2 | , | t 3 | 1 \lvert t_1 \rvert , \lvert t_2 \rvert , \lvert t_3 \rvert \ge 1 , | t 1 + t 2 | , | t 2 + t 3 | , | t 3 + t 1 | 1 \lvert t_1 + t_2 \rvert , \lvert t_2 + t_3 \rvert , \lvert t_3 + t_1 \rvert \ge 1 and | t 1 + t 2 + t 3 | 1 \lvert t_1 + t_2 + t_3 \rvert \ge 1 with σ 1 , σ 2 , σ 3 > K \sigma _1 , \sigma _2, \sigma _3 > -K and σ 1 + σ 2 , σ 2 + σ 3 , σ 3 + σ 1 > 1 K \sigma _1 +\sigma _2, \sigma _2 + \sigma _3, \sigma _3 + \sigma _1 > 1-K , where K K is a positive integer, from bounds for the Hurwitz zeta function which are shown by Bourgain’s bounds for exponential sums.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信