非对称纳什议价解的非合作支持

V. Britz, P. Herings, A. Predtetchinski
{"title":"非对称纳什议价解的非合作支持","authors":"V. Britz, P. Herings, A. Predtetchinski","doi":"10.2139/ssrn.1259002","DOIUrl":null,"url":null,"abstract":"We study a model of non-cooperative multilateral unanimity bargaining on a full-dimensional payoff set. The probability distribution with which the proposing player is selected in each bargaining round follows an irreducible Markov process. If a proposal is rejected, negotiations break down with an exogenous probability and the next round starts with the complementary probability. As the risk of exogenous breakdown vanishes, stationary subgame perfect equilibrium payoffs converge to the weighted Nash bargaining solution with the stationary distribution of the Markov process as the weight vector.","PeriodicalId":420730,"journal":{"name":"ERN: Bargaining Theory (Topic)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Non-Cooperative Support for the Asymmetric Nash Bargaining Solution\",\"authors\":\"V. Britz, P. Herings, A. Predtetchinski\",\"doi\":\"10.2139/ssrn.1259002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a model of non-cooperative multilateral unanimity bargaining on a full-dimensional payoff set. The probability distribution with which the proposing player is selected in each bargaining round follows an irreducible Markov process. If a proposal is rejected, negotiations break down with an exogenous probability and the next round starts with the complementary probability. As the risk of exogenous breakdown vanishes, stationary subgame perfect equilibrium payoffs converge to the weighted Nash bargaining solution with the stationary distribution of the Markov process as the weight vector.\",\"PeriodicalId\":420730,\"journal\":{\"name\":\"ERN: Bargaining Theory (Topic)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Bargaining Theory (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1259002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Bargaining Theory (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1259002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

研究了一个全维收益集上的非合作多边一致议价模型。在每一轮谈判中,提议者被选中的概率分布遵循一个不可约的马尔可夫过程。如果提案被拒绝,谈判以外生概率破裂,下一轮谈判以互补概率开始。随着外生崩溃风险的消失,平稳子博弈的完全均衡收益收敛到以马尔可夫过程的平稳分布为权向量的加权纳什议价解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Cooperative Support for the Asymmetric Nash Bargaining Solution
We study a model of non-cooperative multilateral unanimity bargaining on a full-dimensional payoff set. The probability distribution with which the proposing player is selected in each bargaining round follows an irreducible Markov process. If a proposal is rejected, negotiations break down with an exogenous probability and the next round starts with the complementary probability. As the risk of exogenous breakdown vanishes, stationary subgame perfect equilibrium payoffs converge to the weighted Nash bargaining solution with the stationary distribution of the Markov process as the weight vector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信