{"title":"研究长通道双栅铁电无结晶体管负电容效应的解析模型","authors":"Hema Mehta, H. Kaur","doi":"10.1109/APMC.2016.7931309","DOIUrl":null,"url":null,"abstract":"In this work, we have theoretically investigated the impact of temperature dependent Negative Capacitance (NC) effect on electrical characteristics of long channel Double Gate Ferroelectric Junctionless Transistor for temperature range 280 to 340K. We have considered metal-ferroelectric-semiconductor (MFS) structure and incorporated ferroelectric material Strontium Bismuth Tantalate (SBT) as gate insulator. The impact of temperature variation on electrical parameters such as surface potential, gain, gate capacitance, and mobile charge density has been studied. It has been observed that internal voltage amplification decreases with increase in temperature. Also, degradation of gain and gate capacitance is observed with gradual increase in temperature.","PeriodicalId":166478,"journal":{"name":"2016 Asia-Pacific Microwave Conference (APMC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical model to study temperature dependent Negative Capacitance effect on long channel Double Gate Ferroelectric Junctionless Transistor\",\"authors\":\"Hema Mehta, H. Kaur\",\"doi\":\"10.1109/APMC.2016.7931309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we have theoretically investigated the impact of temperature dependent Negative Capacitance (NC) effect on electrical characteristics of long channel Double Gate Ferroelectric Junctionless Transistor for temperature range 280 to 340K. We have considered metal-ferroelectric-semiconductor (MFS) structure and incorporated ferroelectric material Strontium Bismuth Tantalate (SBT) as gate insulator. The impact of temperature variation on electrical parameters such as surface potential, gain, gate capacitance, and mobile charge density has been studied. It has been observed that internal voltage amplification decreases with increase in temperature. Also, degradation of gain and gate capacitance is observed with gradual increase in temperature.\",\"PeriodicalId\":166478,\"journal\":{\"name\":\"2016 Asia-Pacific Microwave Conference (APMC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Asia-Pacific Microwave Conference (APMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APMC.2016.7931309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific Microwave Conference (APMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APMC.2016.7931309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analytical model to study temperature dependent Negative Capacitance effect on long channel Double Gate Ferroelectric Junctionless Transistor
In this work, we have theoretically investigated the impact of temperature dependent Negative Capacitance (NC) effect on electrical characteristics of long channel Double Gate Ferroelectric Junctionless Transistor for temperature range 280 to 340K. We have considered metal-ferroelectric-semiconductor (MFS) structure and incorporated ferroelectric material Strontium Bismuth Tantalate (SBT) as gate insulator. The impact of temperature variation on electrical parameters such as surface potential, gain, gate capacitance, and mobile charge density has been studied. It has been observed that internal voltage amplification decreases with increase in temperature. Also, degradation of gain and gate capacitance is observed with gradual increase in temperature.