{"title":"基于寄生元件栅极偶极天线的新型AlGaN / GaN等离子共振太赫兹探测器的响应性增强","authors":"T. Tanigawa, T. Onishi, S. Takigawa, T. Otsuji","doi":"10.1109/DRC.2010.5551895","DOIUrl":null,"url":null,"abstract":"Plasmon-resonant terahertz (THz) detection using heterojunction field effect transistors (HFETs) is a promising method to enable compact and efficient THz detectors which can be applied to real-time imaging systems or THz spectroscopic analysis [1–2]. So far, the plasmon-resonant detectors which receive sub-THz and THz radiation at a gate bonding-wire or an external antenna have been reported [3–5]. However, the signal transmission from the antenna to the FET causes large propagation loss which degrades the sensitivity. In this paper, we present a novel AlGaN / GaN heterojunction FET which can detect THz radiation directly at a gate electrode with high responsivity.","PeriodicalId":396875,"journal":{"name":"68th Device Research Conference","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Enhanced responsivity in a novel AlGaN / GaN plasmon-resonant terahertz detector using gate-dipole antenna with parasitic elements\",\"authors\":\"T. Tanigawa, T. Onishi, S. Takigawa, T. Otsuji\",\"doi\":\"10.1109/DRC.2010.5551895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plasmon-resonant terahertz (THz) detection using heterojunction field effect transistors (HFETs) is a promising method to enable compact and efficient THz detectors which can be applied to real-time imaging systems or THz spectroscopic analysis [1–2]. So far, the plasmon-resonant detectors which receive sub-THz and THz radiation at a gate bonding-wire or an external antenna have been reported [3–5]. However, the signal transmission from the antenna to the FET causes large propagation loss which degrades the sensitivity. In this paper, we present a novel AlGaN / GaN heterojunction FET which can detect THz radiation directly at a gate electrode with high responsivity.\",\"PeriodicalId\":396875,\"journal\":{\"name\":\"68th Device Research Conference\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"68th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2010.5551895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"68th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2010.5551895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced responsivity in a novel AlGaN / GaN plasmon-resonant terahertz detector using gate-dipole antenna with parasitic elements
Plasmon-resonant terahertz (THz) detection using heterojunction field effect transistors (HFETs) is a promising method to enable compact and efficient THz detectors which can be applied to real-time imaging systems or THz spectroscopic analysis [1–2]. So far, the plasmon-resonant detectors which receive sub-THz and THz radiation at a gate bonding-wire or an external antenna have been reported [3–5]. However, the signal transmission from the antenna to the FET causes large propagation loss which degrades the sensitivity. In this paper, we present a novel AlGaN / GaN heterojunction FET which can detect THz radiation directly at a gate electrode with high responsivity.