极大中心化一元群及其与极小克隆的关系

Hajime Machida, I. Rosenberg
{"title":"极大中心化一元群及其与极小克隆的关系","authors":"Hajime Machida, I. Rosenberg","doi":"10.1109/ISMVL.2011.36","DOIUrl":null,"url":null,"abstract":"A centralizing monoid is a set of unary functions on a fixed set $A$ which commute with some set of functions on $A$. It is known to be hard to determine effectively such centralizing monoids. In this paper we focus on maximal centralizing monoids. It is proved that they have strong connection to minimal clones. We determine all maximal centralizing monoids on a three-element set and, then, prove a general result relating constant functions to maximal centralizing monoids.","PeriodicalId":234611,"journal":{"name":"2011 41st IEEE International Symposium on Multiple-Valued Logic","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Maximal Centralizing Monoids and their Relation to Minimal Clones\",\"authors\":\"Hajime Machida, I. Rosenberg\",\"doi\":\"10.1109/ISMVL.2011.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A centralizing monoid is a set of unary functions on a fixed set $A$ which commute with some set of functions on $A$. It is known to be hard to determine effectively such centralizing monoids. In this paper we focus on maximal centralizing monoids. It is proved that they have strong connection to minimal clones. We determine all maximal centralizing monoids on a three-element set and, then, prove a general result relating constant functions to maximal centralizing monoids.\",\"PeriodicalId\":234611,\"journal\":{\"name\":\"2011 41st IEEE International Symposium on Multiple-Valued Logic\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 41st IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2011.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 41st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2011.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

一个集中的单oid是一个固定集合$A$上的一元函数集合,它与$A$上的一些函数集合交换。众所周知,很难有效地确定这种集中的monoids。在本文中,我们主要讨论极大中心化独群。证明了它们与最小克隆有很强的联系。我们确定了三元集合上的所有极大集中一元群,然后证明了一个关于常数函数与极大集中一元群的一般结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal Centralizing Monoids and their Relation to Minimal Clones
A centralizing monoid is a set of unary functions on a fixed set $A$ which commute with some set of functions on $A$. It is known to be hard to determine effectively such centralizing monoids. In this paper we focus on maximal centralizing monoids. It is proved that they have strong connection to minimal clones. We determine all maximal centralizing monoids on a three-element set and, then, prove a general result relating constant functions to maximal centralizing monoids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信