Nannan Chen, Mu Qin, Qunlin Gong, Nan Xu, Yu Lin, Jiahong Wang, Pengxiang Zheng
{"title":"mRNA调控网络的构建揭示心房颤动的关键基因","authors":"Nannan Chen, Mu Qin, Qunlin Gong, Nan Xu, Yu Lin, Jiahong Wang, Pengxiang Zheng","doi":"10.1155/2021/5527240","DOIUrl":null,"url":null,"abstract":"Atrial fibrillation (AF), the most familiar heart rhythm disorder, is a major cause of stroke in the world, whereas the mechanism behind AF remains largely unclear. In the current study, we used the RNA-seq method to identify 275 positively regulated mRNAs and 117 negatively regulated mRNAs in AF compared to healthy controls. Through bioinformatic analysis, it indicated that these distinctively expressed genes took part in regulating multiple AF-related biological processes and pathways, such as platelet aggregation, platelet activation, pri-miRNA transcription, and transforming growth factor-beta (TGF-β) receptor signaling pathway. Protein-protein interaction (PPI) network analysis identified ITGB5, SRC, ACTG1, ILK, ITGA2B, ITGB3, TUBB4B, CDK11A, PAFAH1B1, CDK11B, and TUBG1 as hub regulators in AF. Moreover, the quantitative real-time PCR (qRT-PCR) assay was conducted and revealed that these hub genes were remarkably overexpressed in AF samples compared to normal samples. We believed that this study would enrich the understanding of the pathogenesis of AF and enable further research on the pathogenesis of AF.","PeriodicalId":182719,"journal":{"name":"Comput. Math. Methods Medicine","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of mRNA Regulatory Networks Reveals the Key Genes in Atrial Fibrillation\",\"authors\":\"Nannan Chen, Mu Qin, Qunlin Gong, Nan Xu, Yu Lin, Jiahong Wang, Pengxiang Zheng\",\"doi\":\"10.1155/2021/5527240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atrial fibrillation (AF), the most familiar heart rhythm disorder, is a major cause of stroke in the world, whereas the mechanism behind AF remains largely unclear. In the current study, we used the RNA-seq method to identify 275 positively regulated mRNAs and 117 negatively regulated mRNAs in AF compared to healthy controls. Through bioinformatic analysis, it indicated that these distinctively expressed genes took part in regulating multiple AF-related biological processes and pathways, such as platelet aggregation, platelet activation, pri-miRNA transcription, and transforming growth factor-beta (TGF-β) receptor signaling pathway. Protein-protein interaction (PPI) network analysis identified ITGB5, SRC, ACTG1, ILK, ITGA2B, ITGB3, TUBB4B, CDK11A, PAFAH1B1, CDK11B, and TUBG1 as hub regulators in AF. Moreover, the quantitative real-time PCR (qRT-PCR) assay was conducted and revealed that these hub genes were remarkably overexpressed in AF samples compared to normal samples. We believed that this study would enrich the understanding of the pathogenesis of AF and enable further research on the pathogenesis of AF.\",\"PeriodicalId\":182719,\"journal\":{\"name\":\"Comput. Math. Methods Medicine\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Math. Methods Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/5527240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Methods Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/5527240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Construction of mRNA Regulatory Networks Reveals the Key Genes in Atrial Fibrillation
Atrial fibrillation (AF), the most familiar heart rhythm disorder, is a major cause of stroke in the world, whereas the mechanism behind AF remains largely unclear. In the current study, we used the RNA-seq method to identify 275 positively regulated mRNAs and 117 negatively regulated mRNAs in AF compared to healthy controls. Through bioinformatic analysis, it indicated that these distinctively expressed genes took part in regulating multiple AF-related biological processes and pathways, such as platelet aggregation, platelet activation, pri-miRNA transcription, and transforming growth factor-beta (TGF-β) receptor signaling pathway. Protein-protein interaction (PPI) network analysis identified ITGB5, SRC, ACTG1, ILK, ITGA2B, ITGB3, TUBB4B, CDK11A, PAFAH1B1, CDK11B, and TUBG1 as hub regulators in AF. Moreover, the quantitative real-time PCR (qRT-PCR) assay was conducted and revealed that these hub genes were remarkably overexpressed in AF samples compared to normal samples. We believed that this study would enrich the understanding of the pathogenesis of AF and enable further research on the pathogenesis of AF.