Pianissimo:一种亚毫瓦级深度神经网络加速器,具有渐进式逐位数据路径架构,用于边缘自适应推理

Jun Suzuki, Jaehoon Yu, Mari Yasunaga, Ángel López García-Arias, Yasuyuki Okoshi, Shungo Kumazawa, Kota Ando, Kazushi Kawamura, Thiem Van Chu, Masato Motomura
{"title":"Pianissimo:一种亚毫瓦级深度神经网络加速器,具有渐进式逐位数据路径架构,用于边缘自适应推理","authors":"Jun Suzuki, Jaehoon Yu, Mari Yasunaga, Ángel López García-Arias, Yasuyuki Okoshi, Shungo Kumazawa, Kota Ando, Kazushi Kawamura, Thiem Van Chu, Masato Motomura","doi":"10.23919/VLSITechnologyandCir57934.2023.10185293","DOIUrl":null,"url":null,"abstract":"Pianissimo is a sub-mW class inference accelerator that adaptively responds to the changing edge environmental conditions with a progressive bit-by-bit datapath architecture. SWHW cooperative control with the custom RISC and the HW counters allows Pianissimo adaptive/mixed precision and block skip, providing a better accuracy-computation tradeoff for low-power edge AI. The 40 nm chip, with 1104 KB memory, dissipates 793-1032$\\mu$W at 0.7 V on MobileNetVl, achieving 0. 49-1.25TOPS/W at this ultra-low power range.","PeriodicalId":317958,"journal":{"name":"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pianissimo: A Sub-mW Class DNN Accelerator with Progressive Bit-by-Bit Datapath Architecture for Adaptive Inference at Edge\",\"authors\":\"Jun Suzuki, Jaehoon Yu, Mari Yasunaga, Ángel López García-Arias, Yasuyuki Okoshi, Shungo Kumazawa, Kota Ando, Kazushi Kawamura, Thiem Van Chu, Masato Motomura\",\"doi\":\"10.23919/VLSITechnologyandCir57934.2023.10185293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pianissimo is a sub-mW class inference accelerator that adaptively responds to the changing edge environmental conditions with a progressive bit-by-bit datapath architecture. SWHW cooperative control with the custom RISC and the HW counters allows Pianissimo adaptive/mixed precision and block skip, providing a better accuracy-computation tradeoff for low-power edge AI. The 40 nm chip, with 1104 KB memory, dissipates 793-1032$\\\\mu$W at 0.7 V on MobileNetVl, achieving 0. 49-1.25TOPS/W at this ultra-low power range.\",\"PeriodicalId\":317958,\"journal\":{\"name\":\"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Pianissimo是一种亚毫瓦级的推理加速器,它通过渐进的逐位数据路径架构自适应地响应不断变化的边缘环境条件。SWHW与定制RISC和HW计数器的协同控制允许Pianissimo自适应/混合精度和块跳过,为低功耗边缘AI提供更好的精度计算权衡。40nm芯片,1104 KB内存,在0.7 V下消耗793-1032$\mu$W,在MobileNetVl上实现0。49-1.25TOPS/W在这个超低功率范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pianissimo: A Sub-mW Class DNN Accelerator with Progressive Bit-by-Bit Datapath Architecture for Adaptive Inference at Edge
Pianissimo is a sub-mW class inference accelerator that adaptively responds to the changing edge environmental conditions with a progressive bit-by-bit datapath architecture. SWHW cooperative control with the custom RISC and the HW counters allows Pianissimo adaptive/mixed precision and block skip, providing a better accuracy-computation tradeoff for low-power edge AI. The 40 nm chip, with 1104 KB memory, dissipates 793-1032$\mu$W at 0.7 V on MobileNetVl, achieving 0. 49-1.25TOPS/W at this ultra-low power range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信