Jun Suzuki, Jaehoon Yu, Mari Yasunaga, Ángel López García-Arias, Yasuyuki Okoshi, Shungo Kumazawa, Kota Ando, Kazushi Kawamura, Thiem Van Chu, Masato Motomura
{"title":"Pianissimo:一种亚毫瓦级深度神经网络加速器,具有渐进式逐位数据路径架构,用于边缘自适应推理","authors":"Jun Suzuki, Jaehoon Yu, Mari Yasunaga, Ángel López García-Arias, Yasuyuki Okoshi, Shungo Kumazawa, Kota Ando, Kazushi Kawamura, Thiem Van Chu, Masato Motomura","doi":"10.23919/VLSITechnologyandCir57934.2023.10185293","DOIUrl":null,"url":null,"abstract":"Pianissimo is a sub-mW class inference accelerator that adaptively responds to the changing edge environmental conditions with a progressive bit-by-bit datapath architecture. SWHW cooperative control with the custom RISC and the HW counters allows Pianissimo adaptive/mixed precision and block skip, providing a better accuracy-computation tradeoff for low-power edge AI. The 40 nm chip, with 1104 KB memory, dissipates 793-1032$\\mu$W at 0.7 V on MobileNetVl, achieving 0. 49-1.25TOPS/W at this ultra-low power range.","PeriodicalId":317958,"journal":{"name":"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pianissimo: A Sub-mW Class DNN Accelerator with Progressive Bit-by-Bit Datapath Architecture for Adaptive Inference at Edge\",\"authors\":\"Jun Suzuki, Jaehoon Yu, Mari Yasunaga, Ángel López García-Arias, Yasuyuki Okoshi, Shungo Kumazawa, Kota Ando, Kazushi Kawamura, Thiem Van Chu, Masato Motomura\",\"doi\":\"10.23919/VLSITechnologyandCir57934.2023.10185293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pianissimo is a sub-mW class inference accelerator that adaptively responds to the changing edge environmental conditions with a progressive bit-by-bit datapath architecture. SWHW cooperative control with the custom RISC and the HW counters allows Pianissimo adaptive/mixed precision and block skip, providing a better accuracy-computation tradeoff for low-power edge AI. The 40 nm chip, with 1104 KB memory, dissipates 793-1032$\\\\mu$W at 0.7 V on MobileNetVl, achieving 0. 49-1.25TOPS/W at this ultra-low power range.\",\"PeriodicalId\":317958,\"journal\":{\"name\":\"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pianissimo: A Sub-mW Class DNN Accelerator with Progressive Bit-by-Bit Datapath Architecture for Adaptive Inference at Edge
Pianissimo is a sub-mW class inference accelerator that adaptively responds to the changing edge environmental conditions with a progressive bit-by-bit datapath architecture. SWHW cooperative control with the custom RISC and the HW counters allows Pianissimo adaptive/mixed precision and block skip, providing a better accuracy-computation tradeoff for low-power edge AI. The 40 nm chip, with 1104 KB memory, dissipates 793-1032$\mu$W at 0.7 V on MobileNetVl, achieving 0. 49-1.25TOPS/W at this ultra-low power range.