{"title":"圆形和严格非圆形信号混合的确定性cram<s:1> - rao界","authors":"Jens Steinwandt, F. Roemer, M. Haardt","doi":"10.1109/ISWCS.2015.7454431","DOIUrl":null,"url":null,"abstract":"The problem of estimating the signal parameters of a mixture of circular and strictly second-order (SO) non-circular (NC) signals impinging on an antenna array has recently attracted considerable attention. Several high-resolution algorithms have been proposed for this scenario that improve the estimation accuracy of the traditional schemes and simultaneously increase the number of resolvable signals. In this paper, we derive a closed-form expression of the deterministic Cramér-Rao bound (CRB), termed deterministic C-NC CRB, as a benchmark for this new class of algorithms. The obtained result allows to assess the maximum achievable performance gain in this scenario. The derivation is based on the Slepian-Bangs formula, which is still applicable due to the deterministic data assumption. Simulation results show that the C-NC CRB decreases when the number of strictly non-circular signals increases within a fixed number of sources. In this case, also the individual bounds of the circular signals decrease, which suggests that the presence of strictly non-circular sources reduces the estimation error of the circular signals.","PeriodicalId":383105,"journal":{"name":"2015 International Symposium on Wireless Communication Systems (ISWCS)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Deterministic Cramér-Rao bound for a mixture of circular and strictly non-circular signals\",\"authors\":\"Jens Steinwandt, F. Roemer, M. Haardt\",\"doi\":\"10.1109/ISWCS.2015.7454431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of estimating the signal parameters of a mixture of circular and strictly second-order (SO) non-circular (NC) signals impinging on an antenna array has recently attracted considerable attention. Several high-resolution algorithms have been proposed for this scenario that improve the estimation accuracy of the traditional schemes and simultaneously increase the number of resolvable signals. In this paper, we derive a closed-form expression of the deterministic Cramér-Rao bound (CRB), termed deterministic C-NC CRB, as a benchmark for this new class of algorithms. The obtained result allows to assess the maximum achievable performance gain in this scenario. The derivation is based on the Slepian-Bangs formula, which is still applicable due to the deterministic data assumption. Simulation results show that the C-NC CRB decreases when the number of strictly non-circular signals increases within a fixed number of sources. In this case, also the individual bounds of the circular signals decrease, which suggests that the presence of strictly non-circular sources reduces the estimation error of the circular signals.\",\"PeriodicalId\":383105,\"journal\":{\"name\":\"2015 International Symposium on Wireless Communication Systems (ISWCS)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Symposium on Wireless Communication Systems (ISWCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWCS.2015.7454431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2015.7454431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deterministic Cramér-Rao bound for a mixture of circular and strictly non-circular signals
The problem of estimating the signal parameters of a mixture of circular and strictly second-order (SO) non-circular (NC) signals impinging on an antenna array has recently attracted considerable attention. Several high-resolution algorithms have been proposed for this scenario that improve the estimation accuracy of the traditional schemes and simultaneously increase the number of resolvable signals. In this paper, we derive a closed-form expression of the deterministic Cramér-Rao bound (CRB), termed deterministic C-NC CRB, as a benchmark for this new class of algorithms. The obtained result allows to assess the maximum achievable performance gain in this scenario. The derivation is based on the Slepian-Bangs formula, which is still applicable due to the deterministic data assumption. Simulation results show that the C-NC CRB decreases when the number of strictly non-circular signals increases within a fixed number of sources. In this case, also the individual bounds of the circular signals decrease, which suggests that the presence of strictly non-circular sources reduces the estimation error of the circular signals.