2D与3D地质力学模型对比对孔隙压力和裂缝梯度分析的影响

J. J. V. D. L. D. Rodríguez, T. Harrold, M. Nikolinakou, O. F. Bellón, P. Jiménez, A. M. Pascual
{"title":"2D与3D地质力学模型对比对孔隙压力和裂缝梯度分析的影响","authors":"J. J. V. D. L. D. Rodríguez, T. Harrold, M. Nikolinakou, O. F. Bellón, P. Jiménez, A. M. Pascual","doi":"10.3997/2214-4609.201900521","DOIUrl":null,"url":null,"abstract":"Geomechanical modeling can be an important tool in constraining pore pressure and fracture gradients in exploration wells, especially in areas of salt tectonics. Full 3D modeling can be time consuming and impractical for planning so knowing that 2D modeling can achieve similar results can be significant. We predict the stress and strain description around a salt structure from the West African Coast using a 3D static geomechanical model and compare the results to a 2D model. The 3D model uses the present-day basin geometry and a series of inputs (pore pressure, material properties assuming poro-elastic behavior for sediments and visco-plastic behavior for salt, boundary constraints and initial vertical to horizontal effective stress ratios). The 2D model uses geometry from the 3D model and the same input parameters. Both models predict similar sediment and salt displacements and stress ratio reduction above the salt structure although the displacements and stress ratio reduction are larger in the 2D model. The results of our analysis indicate that 2D geomechanical models, if selected correctly, can represent more complex 3D geometries. In addition, less computationally expensive 2D model allow a more complete sensitivity analysis and the identification of the mechanism of stress / pore pressure reduction.","PeriodicalId":295902,"journal":{"name":"Second EAGE Workshop on Pore Pressure Prediction","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D vs 3D Geomechanical Modelling Comparison to Influence Pore Pressure and Fracture Gradient Analysis\",\"authors\":\"J. J. V. D. L. D. Rodríguez, T. Harrold, M. Nikolinakou, O. F. Bellón, P. Jiménez, A. M. Pascual\",\"doi\":\"10.3997/2214-4609.201900521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geomechanical modeling can be an important tool in constraining pore pressure and fracture gradients in exploration wells, especially in areas of salt tectonics. Full 3D modeling can be time consuming and impractical for planning so knowing that 2D modeling can achieve similar results can be significant. We predict the stress and strain description around a salt structure from the West African Coast using a 3D static geomechanical model and compare the results to a 2D model. The 3D model uses the present-day basin geometry and a series of inputs (pore pressure, material properties assuming poro-elastic behavior for sediments and visco-plastic behavior for salt, boundary constraints and initial vertical to horizontal effective stress ratios). The 2D model uses geometry from the 3D model and the same input parameters. Both models predict similar sediment and salt displacements and stress ratio reduction above the salt structure although the displacements and stress ratio reduction are larger in the 2D model. The results of our analysis indicate that 2D geomechanical models, if selected correctly, can represent more complex 3D geometries. In addition, less computationally expensive 2D model allow a more complete sensitivity analysis and the identification of the mechanism of stress / pore pressure reduction.\",\"PeriodicalId\":295902,\"journal\":{\"name\":\"Second EAGE Workshop on Pore Pressure Prediction\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Second EAGE Workshop on Pore Pressure Prediction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201900521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Second EAGE Workshop on Pore Pressure Prediction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201900521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地质力学建模是控制探井孔隙压力和裂缝梯度的重要工具,特别是在含盐构造地区。完整的3D建模既耗时又不切实际,因此了解2D建模可以实现类似的结果是非常重要的。我们使用3D静态地质力学模型预测了西非海岸盐结构周围的应力和应变描述,并将结果与2D模型进行了比较。3D模型使用了当前盆地的几何形状和一系列输入(孔隙压力、假设沉积物的孔隙弹性行为和盐的粘塑性行为的材料特性、边界约束和初始垂直与水平有效应力比)。2D模型使用来自3D模型的几何图形和相同的输入参数。两种模型预测的盐结构上方沉积物和盐的位移和应力比减小量相似,但二维模型的位移和应力比减小量更大。我们的分析结果表明,如果选择正确,二维地质力学模型可以代表更复杂的三维几何形状。此外,计算成本较低的二维模型可以进行更完整的敏感性分析和识别应力/孔隙压力降低的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2D vs 3D Geomechanical Modelling Comparison to Influence Pore Pressure and Fracture Gradient Analysis
Geomechanical modeling can be an important tool in constraining pore pressure and fracture gradients in exploration wells, especially in areas of salt tectonics. Full 3D modeling can be time consuming and impractical for planning so knowing that 2D modeling can achieve similar results can be significant. We predict the stress and strain description around a salt structure from the West African Coast using a 3D static geomechanical model and compare the results to a 2D model. The 3D model uses the present-day basin geometry and a series of inputs (pore pressure, material properties assuming poro-elastic behavior for sediments and visco-plastic behavior for salt, boundary constraints and initial vertical to horizontal effective stress ratios). The 2D model uses geometry from the 3D model and the same input parameters. Both models predict similar sediment and salt displacements and stress ratio reduction above the salt structure although the displacements and stress ratio reduction are larger in the 2D model. The results of our analysis indicate that 2D geomechanical models, if selected correctly, can represent more complex 3D geometries. In addition, less computationally expensive 2D model allow a more complete sensitivity analysis and the identification of the mechanism of stress / pore pressure reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信