基于多层感知器集成的遥感影像土地覆盖分类领域自适应

Shounak Chakraborty, M. Roy
{"title":"基于多层感知器集成的遥感影像土地覆盖分类领域自适应","authors":"Shounak Chakraborty, M. Roy","doi":"10.1109/RAIT.2016.7507955","DOIUrl":null,"url":null,"abstract":"Domain Adaptation (DA) for remotely sensed images using ensemble of Multilayer Perceptrons (MLP) is presented in this article. Using the labelled information from a source domain, the proposed method utilises the disagreement among the MLPs to figure out the `most informative' patterns from the target domain using transfer learning. These selected patterns are then labelled by human expert and are used for training the ensemble. Finally the land-cover classes for a target region are predicted by applying a non-trainable majority voting rule among different MLPs in ensemble. Experiments have been conducted on multispectral images for two different regions in India obtained from Landsat-8 satellite and the proposed DA method outperforms the corresponding random sampling approach.","PeriodicalId":289216,"journal":{"name":"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Domain adaptation for land-cover classification of remotely sensed images using ensemble of Multilayer Perceptrons\",\"authors\":\"Shounak Chakraborty, M. Roy\",\"doi\":\"10.1109/RAIT.2016.7507955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domain Adaptation (DA) for remotely sensed images using ensemble of Multilayer Perceptrons (MLP) is presented in this article. Using the labelled information from a source domain, the proposed method utilises the disagreement among the MLPs to figure out the `most informative' patterns from the target domain using transfer learning. These selected patterns are then labelled by human expert and are used for training the ensemble. Finally the land-cover classes for a target region are predicted by applying a non-trainable majority voting rule among different MLPs in ensemble. Experiments have been conducted on multispectral images for two different regions in India obtained from Landsat-8 satellite and the proposed DA method outperforms the corresponding random sampling approach.\",\"PeriodicalId\":289216,\"journal\":{\"name\":\"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAIT.2016.7507955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAIT.2016.7507955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于多层感知器集成的遥感图像域自适应方法。利用来自源域的标记信息,该方法利用mlp之间的分歧,利用迁移学习从目标域找出“最具信息量”的模式。这些选择的模式然后由人类专家标记,并用于训练集成。最后,通过在不同mlp中应用不可训练的多数投票规则来预测目标区域的土地覆盖类别。利用Landsat-8卫星获取的印度两个不同地区的多光谱图像进行了实验,结果表明该方法优于相应的随机采样方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain adaptation for land-cover classification of remotely sensed images using ensemble of Multilayer Perceptrons
Domain Adaptation (DA) for remotely sensed images using ensemble of Multilayer Perceptrons (MLP) is presented in this article. Using the labelled information from a source domain, the proposed method utilises the disagreement among the MLPs to figure out the `most informative' patterns from the target domain using transfer learning. These selected patterns are then labelled by human expert and are used for training the ensemble. Finally the land-cover classes for a target region are predicted by applying a non-trainable majority voting rule among different MLPs in ensemble. Experiments have been conducted on multispectral images for two different regions in India obtained from Landsat-8 satellite and the proposed DA method outperforms the corresponding random sampling approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信