基于有限书目元数据的文本分类

K. Denecke, T. Risse, Thomas Baehr
{"title":"基于有限书目元数据的文本分类","authors":"K. Denecke, T. Risse, Thomas Baehr","doi":"10.1109/ICDIM.2009.5356767","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a method for categorizing digital items according to their topic, only relying on the document's metadata, such as author name and title information. The proposed approach is based on a set of lexical resources constructed for our purposes (e.g., journal titles, conference names) and on a traditional machine-learning classifier that assigns one category to each document based on identified core features. The system is evaluated on a real-world data set and the influence of different feature combinations and settings is studied. Although the available information is limited, the results show that the approach is capable to efficiently classify data items representing documents.","PeriodicalId":300287,"journal":{"name":"2009 Fourth International Conference on Digital Information Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Text classification based on limited bibliographic metadata\",\"authors\":\"K. Denecke, T. Risse, Thomas Baehr\",\"doi\":\"10.1109/ICDIM.2009.5356767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a method for categorizing digital items according to their topic, only relying on the document's metadata, such as author name and title information. The proposed approach is based on a set of lexical resources constructed for our purposes (e.g., journal titles, conference names) and on a traditional machine-learning classifier that assigns one category to each document based on identified core features. The system is evaluated on a real-world data set and the influence of different feature combinations and settings is studied. Although the available information is limited, the results show that the approach is capable to efficiently classify data items representing documents.\",\"PeriodicalId\":300287,\"journal\":{\"name\":\"2009 Fourth International Conference on Digital Information Management\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fourth International Conference on Digital Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIM.2009.5356767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International Conference on Digital Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2009.5356767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们介绍了一种根据主题对数字项目进行分类的方法,该方法仅依赖于文档的元数据,如作者姓名和标题信息。提出的方法基于为我们的目的而构建的一组词汇资源(例如,期刊标题,会议名称)和传统的机器学习分类器,该分类器根据识别的核心特征为每个文档分配一个类别。在实际数据集上对系统进行了评估,并研究了不同特征组合和设置的影响。尽管可用的信息有限,但结果表明,该方法能够有效地对表示文档的数据项进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text classification based on limited bibliographic metadata
In this paper, we introduce a method for categorizing digital items according to their topic, only relying on the document's metadata, such as author name and title information. The proposed approach is based on a set of lexical resources constructed for our purposes (e.g., journal titles, conference names) and on a traditional machine-learning classifier that assigns one category to each document based on identified core features. The system is evaluated on a real-world data set and the influence of different feature combinations and settings is studied. Although the available information is limited, the results show that the approach is capable to efficiently classify data items representing documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信