使用2×2窗口补丁鲁棒边缘停止函数的医学图像分割

Agus Pratondo, Rickman Roedavan, A. P. Sujana, M. Rizqyawan
{"title":"使用2×2窗口补丁鲁棒边缘停止函数的医学图像分割","authors":"Agus Pratondo, Rickman Roedavan, A. P. Sujana, M. Rizqyawan","doi":"10.1109/ICSET51301.2020.9265376","DOIUrl":null,"url":null,"abstract":"Edge-based active contour models using robust edge-stop functions (ESFs) have shown their effectiveness in segmenting medical images. The ESFs utilize classification scores from machine learning algorithms which are sensitives to the feature vector. The number of features influences the speed of the algorithms. Previous studies utilize image patch 3×3 which consists of 9 components in the feature vector and leads to a long computational time. This paper investigates the use of a simple feature vector for the ESFs. An image patch of 2×2 is selected and applied to a classification algorithm, namely the k-nearest neighbors (k-NN). Experimental results indicate that the feature leads to similar in accuracy but faster in computational speed.","PeriodicalId":299530,"journal":{"name":"2020 IEEE 10th International Conference on System Engineering and Technology (ICSET)","volume":"48 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Medical Image Segmentation Using a Robust Edge-stop Function with 2×2 Window Patch\",\"authors\":\"Agus Pratondo, Rickman Roedavan, A. P. Sujana, M. Rizqyawan\",\"doi\":\"10.1109/ICSET51301.2020.9265376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge-based active contour models using robust edge-stop functions (ESFs) have shown their effectiveness in segmenting medical images. The ESFs utilize classification scores from machine learning algorithms which are sensitives to the feature vector. The number of features influences the speed of the algorithms. Previous studies utilize image patch 3×3 which consists of 9 components in the feature vector and leads to a long computational time. This paper investigates the use of a simple feature vector for the ESFs. An image patch of 2×2 is selected and applied to a classification algorithm, namely the k-nearest neighbors (k-NN). Experimental results indicate that the feature leads to similar in accuracy but faster in computational speed.\",\"PeriodicalId\":299530,\"journal\":{\"name\":\"2020 IEEE 10th International Conference on System Engineering and Technology (ICSET)\",\"volume\":\"48 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 10th International Conference on System Engineering and Technology (ICSET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSET51301.2020.9265376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 10th International Conference on System Engineering and Technology (ICSET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSET51301.2020.9265376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

利用鲁棒边缘停止函数(ESFs)的基于边缘的主动轮廓模型在医学图像分割中显示了其有效性。esf利用对特征向量敏感的机器学习算法的分类分数。特征的数量影响算法的速度。以往的研究使用的图像patch 3×3在特征向量中由9个分量组成,计算时间长。本文研究了esf的简单特征向量的使用。选取图像patch 2×2并应用于分类算法,即k近邻算法(k-nearest neighbors, k-NN)。实验结果表明,该特征使计算速度更快,但精度相近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Medical Image Segmentation Using a Robust Edge-stop Function with 2×2 Window Patch
Edge-based active contour models using robust edge-stop functions (ESFs) have shown their effectiveness in segmenting medical images. The ESFs utilize classification scores from machine learning algorithms which are sensitives to the feature vector. The number of features influences the speed of the algorithms. Previous studies utilize image patch 3×3 which consists of 9 components in the feature vector and leads to a long computational time. This paper investigates the use of a simple feature vector for the ESFs. An image patch of 2×2 is selected and applied to a classification algorithm, namely the k-nearest neighbors (k-NN). Experimental results indicate that the feature leads to similar in accuracy but faster in computational speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信