Silvano Seva, Claudia Esther Lukaschewsky Mauriziano, W. Fornaciari, A. Leva
{"title":"基于事件实时控制的低功耗FPGA平台","authors":"Silvano Seva, Claudia Esther Lukaschewsky Mauriziano, W. Fornaciari, A. Leva","doi":"10.4230/OASIcs.NG-RES.2020.4","DOIUrl":null,"url":null,"abstract":"We present a wireless sensor node suitable for event-based real-time control networks. The node achieves low-power operation thanks to tight clock synchronisation with the network master (at present we refer to a star network but extensions are envisaged). Also, the node does not employ any programmable device but rather an FPGA, thus being inherently immune to attacks based on code tampering. Experimental results on a simple laboratory apparatus are presented.","PeriodicalId":151755,"journal":{"name":"NG-RES@HiPEAC","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Low Energy FPGA Platform for Real-Time Event-Based Control\",\"authors\":\"Silvano Seva, Claudia Esther Lukaschewsky Mauriziano, W. Fornaciari, A. Leva\",\"doi\":\"10.4230/OASIcs.NG-RES.2020.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a wireless sensor node suitable for event-based real-time control networks. The node achieves low-power operation thanks to tight clock synchronisation with the network master (at present we refer to a star network but extensions are envisaged). Also, the node does not employ any programmable device but rather an FPGA, thus being inherently immune to attacks based on code tampering. Experimental results on a simple laboratory apparatus are presented.\",\"PeriodicalId\":151755,\"journal\":{\"name\":\"NG-RES@HiPEAC\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NG-RES@HiPEAC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/OASIcs.NG-RES.2020.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NG-RES@HiPEAC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.NG-RES.2020.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Low Energy FPGA Platform for Real-Time Event-Based Control
We present a wireless sensor node suitable for event-based real-time control networks. The node achieves low-power operation thanks to tight clock synchronisation with the network master (at present we refer to a star network but extensions are envisaged). Also, the node does not employ any programmable device but rather an FPGA, thus being inherently immune to attacks based on code tampering. Experimental results on a simple laboratory apparatus are presented.