灰度噪声下无监督学习的神经网络立方体(N-cubes)

Hoon Kang, Won-Hee Lee
{"title":"灰度噪声下无监督学习的神经网络立方体(N-cubes)","authors":"Hoon Kang, Won-Hee Lee","doi":"10.1109/FUZZY.1999.793204","DOIUrl":null,"url":null,"abstract":"We consider a class of auto-associative memories, namely, N-Cubes (neural-network cubes) in which 2D gray-level images and hidden sinusoidal 1D wavelets are stored in cubical memories. First, we develop a learning procedure based upon the least-squares algorithm. Therefore, each 2D training image is mapped into the associated 1D waveform in the training phase. Next, we show how the recall procedure minimizes errors among the orthogonal basis functions in the hidden layer. As a 2D image corrupted by noise is applied to an N-Cube, the nearest one of the originally stored training images would be retrieved in the recall phase. Simulation results confirm the efficiency and the noise-free properties of N-Cubes.","PeriodicalId":344788,"journal":{"name":"FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network cubes (N-cubes) for unsupervised learning in gray-scale noise\",\"authors\":\"Hoon Kang, Won-Hee Lee\",\"doi\":\"10.1109/FUZZY.1999.793204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a class of auto-associative memories, namely, N-Cubes (neural-network cubes) in which 2D gray-level images and hidden sinusoidal 1D wavelets are stored in cubical memories. First, we develop a learning procedure based upon the least-squares algorithm. Therefore, each 2D training image is mapped into the associated 1D waveform in the training phase. Next, we show how the recall procedure minimizes errors among the orthogonal basis functions in the hidden layer. As a 2D image corrupted by noise is applied to an N-Cube, the nearest one of the originally stored training images would be retrieved in the recall phase. Simulation results confirm the efficiency and the noise-free properties of N-Cubes.\",\"PeriodicalId\":344788,\"journal\":{\"name\":\"FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1999.793204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1999.793204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一类自联想记忆,即n -立方体(神经网络立方体),其中二维灰度图像和隐藏的正弦一维小波存储在立方体记忆中。首先,我们开发了一个基于最小二乘算法的学习过程。因此,在训练阶段,每个二维训练图像都被映射成相应的一维波形。接下来,我们将展示召回过程如何最小化隐藏层中正交基函数之间的误差。当被噪声损坏的2D图像应用到N-Cube时,在召回阶段将检索到最接近原始存储的训练图像之一。仿真结果证实了N-Cubes的效率和无噪声特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network cubes (N-cubes) for unsupervised learning in gray-scale noise
We consider a class of auto-associative memories, namely, N-Cubes (neural-network cubes) in which 2D gray-level images and hidden sinusoidal 1D wavelets are stored in cubical memories. First, we develop a learning procedure based upon the least-squares algorithm. Therefore, each 2D training image is mapped into the associated 1D waveform in the training phase. Next, we show how the recall procedure minimizes errors among the orthogonal basis functions in the hidden layer. As a 2D image corrupted by noise is applied to an N-Cube, the nearest one of the originally stored training images would be retrieved in the recall phase. Simulation results confirm the efficiency and the noise-free properties of N-Cubes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信