{"title":"电导电弧故障模型。应用于UL1699测试建模","authors":"J. Andrea, P. Schweitzer, Jean-Mary Martel","doi":"10.1109/HOLM.2011.6034778","DOIUrl":null,"url":null,"abstract":"Differents types of arc faults can be responsible for the start of an electrical fire. Depending on the power system and the application (photovoltaic, vehicule, aircraft, residential wiring) the arc fault may involve contact or non-contact arcing with eventually semi-conductive materials in the vicinity. Other characteristics such as the gap distance or the electrode material and geometry may also strongly differ. An electrical model was developed to fit with the arc fault scenarios described in the standard for AFCI UL1699. The contact arcing copper-graphite electrodes produced by the arc generator and the non-contact arcing on carbonized track produced with the arc clearing time tester were observed and their electrical characteristics (restrike and burning voltage, time constant and stability) could be verified thanks to the electrical model with a very good agreement. A qualitative study showing the various parameters used for fitting shows that the model is applicable regardless of the arc ignition principle.","PeriodicalId":197233,"journal":{"name":"2011 IEEE 57th Holm Conference on Electrical Contacts (Holm)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Arc Fault Model of Conductance. Application to the UL1699 Tests Modeling\",\"authors\":\"J. Andrea, P. Schweitzer, Jean-Mary Martel\",\"doi\":\"10.1109/HOLM.2011.6034778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differents types of arc faults can be responsible for the start of an electrical fire. Depending on the power system and the application (photovoltaic, vehicule, aircraft, residential wiring) the arc fault may involve contact or non-contact arcing with eventually semi-conductive materials in the vicinity. Other characteristics such as the gap distance or the electrode material and geometry may also strongly differ. An electrical model was developed to fit with the arc fault scenarios described in the standard for AFCI UL1699. The contact arcing copper-graphite electrodes produced by the arc generator and the non-contact arcing on carbonized track produced with the arc clearing time tester were observed and their electrical characteristics (restrike and burning voltage, time constant and stability) could be verified thanks to the electrical model with a very good agreement. A qualitative study showing the various parameters used for fitting shows that the model is applicable regardless of the arc ignition principle.\",\"PeriodicalId\":197233,\"journal\":{\"name\":\"2011 IEEE 57th Holm Conference on Electrical Contacts (Holm)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 57th Holm Conference on Electrical Contacts (Holm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOLM.2011.6034778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 57th Holm Conference on Electrical Contacts (Holm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOLM.2011.6034778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Arc Fault Model of Conductance. Application to the UL1699 Tests Modeling
Differents types of arc faults can be responsible for the start of an electrical fire. Depending on the power system and the application (photovoltaic, vehicule, aircraft, residential wiring) the arc fault may involve contact or non-contact arcing with eventually semi-conductive materials in the vicinity. Other characteristics such as the gap distance or the electrode material and geometry may also strongly differ. An electrical model was developed to fit with the arc fault scenarios described in the standard for AFCI UL1699. The contact arcing copper-graphite electrodes produced by the arc generator and the non-contact arcing on carbonized track produced with the arc clearing time tester were observed and their electrical characteristics (restrike and burning voltage, time constant and stability) could be verified thanks to the electrical model with a very good agreement. A qualitative study showing the various parameters used for fitting shows that the model is applicable regardless of the arc ignition principle.