{"title":"固体纳米孔集成低噪声前置放大器,用于高带宽DNA分析","authors":"J. Rosenstein, V. Ray, M. Drndić, K. Shepard","doi":"10.1109/LISSA.2011.5754155","DOIUrl":null,"url":null,"abstract":"Nanopore sensing platforms have been limited in bandwidth and noise performance by the use of external measurement electronics with significant parasitic impedances. In this work, we describe progress toward integrating detection electronics with solid-state nanopore sensors. This new platform for high-bandwidth single-molecule electrochemical DNA analysis includes a low-noise 8-channel 0.13µm CMOS preamplifier with integrated Ag/AgCl microelectrodes. We also demonstrate monolithic integration of solid-state nanopores in the amplifier chip. This arrangement provides an opportunity to extend the useful bandwidth of nanopore sensors by a factor of ten or more.","PeriodicalId":227469,"journal":{"name":"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Solid-state nanopores integrated with low-noise preamplifiers for high-bandwidth DNA analysis\",\"authors\":\"J. Rosenstein, V. Ray, M. Drndić, K. Shepard\",\"doi\":\"10.1109/LISSA.2011.5754155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanopore sensing platforms have been limited in bandwidth and noise performance by the use of external measurement electronics with significant parasitic impedances. In this work, we describe progress toward integrating detection electronics with solid-state nanopore sensors. This new platform for high-bandwidth single-molecule electrochemical DNA analysis includes a low-noise 8-channel 0.13µm CMOS preamplifier with integrated Ag/AgCl microelectrodes. We also demonstrate monolithic integration of solid-state nanopores in the amplifier chip. This arrangement provides an opportunity to extend the useful bandwidth of nanopore sensors by a factor of ten or more.\",\"PeriodicalId\":227469,\"journal\":{\"name\":\"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LISSA.2011.5754155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LISSA.2011.5754155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
摘要
由于使用具有显著寄生阻抗的外部测量电子器件,纳米孔传感平台在带宽和噪声性能方面受到限制。在这项工作中,我们描述了将探测电子学与固态纳米孔传感器集成的进展。这个用于高带宽单分子电化学DNA分析的新平台包括一个低噪声8通道0.13 μ m CMOS前置放大器,集成了Ag/AgCl微电极。我们也展示了固态纳米孔在放大器芯片上的单片集成。这种安排提供了将纳米孔传感器的有用带宽延长十倍或更多的机会。
Solid-state nanopores integrated with low-noise preamplifiers for high-bandwidth DNA analysis
Nanopore sensing platforms have been limited in bandwidth and noise performance by the use of external measurement electronics with significant parasitic impedances. In this work, we describe progress toward integrating detection electronics with solid-state nanopore sensors. This new platform for high-bandwidth single-molecule electrochemical DNA analysis includes a low-noise 8-channel 0.13µm CMOS preamplifier with integrated Ag/AgCl microelectrodes. We also demonstrate monolithic integration of solid-state nanopores in the amplifier chip. This arrangement provides an opportunity to extend the useful bandwidth of nanopore sensors by a factor of ten or more.