基于平滑正则化的噪声频率响应矢量拟合

A. Carlucci, A. Zanco, R. Trinchero, S. Grivet-Talocia
{"title":"基于平滑正则化的噪声频率响应矢量拟合","authors":"A. Carlucci, A. Zanco, R. Trinchero, S. Grivet-Talocia","doi":"10.1109/SPI54345.2022.9874941","DOIUrl":null,"url":null,"abstract":"We present a simple and effective strategy to compute reduced-order rational macromodels from noisy frequency responses. The reference macromodeling engine is the basic Vector Fitting (VF) scheme, which is well known to be sensitive to noise in the training data. This problem is here avoided by augmenting the VF cost function with a penalization term related to the second derivative of the model, which effectively acts as a regularizer. The results obtained on a set of noisy measurements of a Surface Acoustic Wave (SAW) filter demonstrate the effectiveness of proposed approach in rejecting noise and producing smooth models.","PeriodicalId":285253,"journal":{"name":"2022 IEEE 26th Workshop on Signal and Power Integrity (SPI)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vector Fitting of Noisy Frequency Responses via Smoothing Regularization\",\"authors\":\"A. Carlucci, A. Zanco, R. Trinchero, S. Grivet-Talocia\",\"doi\":\"10.1109/SPI54345.2022.9874941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a simple and effective strategy to compute reduced-order rational macromodels from noisy frequency responses. The reference macromodeling engine is the basic Vector Fitting (VF) scheme, which is well known to be sensitive to noise in the training data. This problem is here avoided by augmenting the VF cost function with a penalization term related to the second derivative of the model, which effectively acts as a regularizer. The results obtained on a set of noisy measurements of a Surface Acoustic Wave (SAW) filter demonstrate the effectiveness of proposed approach in rejecting noise and producing smooth models.\",\"PeriodicalId\":285253,\"journal\":{\"name\":\"2022 IEEE 26th Workshop on Signal and Power Integrity (SPI)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 26th Workshop on Signal and Power Integrity (SPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPI54345.2022.9874941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 26th Workshop on Signal and Power Integrity (SPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPI54345.2022.9874941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种简单有效的从噪声频率响应中计算降阶有理宏观模型的方法。参考的宏建模引擎是基本向量拟合(VF)方案,众所周知,该方案对训练数据中的噪声很敏感。这个问题可以通过增加与模型二阶导数相关的惩罚项的VF成本函数来避免,该惩罚项有效地充当了正则化器。对表面声波(SAW)滤波器的一组噪声测量结果表明,所提出的方法在抑制噪声和产生平滑模型方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vector Fitting of Noisy Frequency Responses via Smoothing Regularization
We present a simple and effective strategy to compute reduced-order rational macromodels from noisy frequency responses. The reference macromodeling engine is the basic Vector Fitting (VF) scheme, which is well known to be sensitive to noise in the training data. This problem is here avoided by augmenting the VF cost function with a penalization term related to the second derivative of the model, which effectively acts as a regularizer. The results obtained on a set of noisy measurements of a Surface Acoustic Wave (SAW) filter demonstrate the effectiveness of proposed approach in rejecting noise and producing smooth models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信