多金属氧酸盐杂化纳米基块用于极紫外光抗蚀剂

Brandon Hardie, M. Roll
{"title":"多金属氧酸盐杂化纳米基块用于极紫外光抗蚀剂","authors":"Brandon Hardie, M. Roll","doi":"10.1109/WMED.2017.7916932","DOIUrl":null,"url":null,"abstract":"Extreme Ultra-violet Lithography (EUVL), regardless of some setbacks, has continued its push as a viable option for next generation nodes of photolithography. Utilizing a 13.5nm wavelength, EUV is still showing promise as a natural progression of optical lithography in the semiconductor industry. Despite this upside, EUVL also has its drawbacks, one of which includes the development of a suitable photoresist material. The development and characterization of polyoxometalate (POM) hybrid nano-building blocks (NBBs) shows great potential as a candidate for improving the patterning of semiconductor devices using EUVL. Octamolybdate macromolecules were synthesized using literature methods. These primary materials were modified for improvements using a combination of physical mixtures with photoacids (resist sensitivity) and epoxide (mechanical stability). In addition, tellurium atoms (EUV absorption) were incorporated chemically and will be explored with similar mixtures to better understand the relatively limited knowledge of POM materials as functional photoresists and dielectric materials.","PeriodicalId":287760,"journal":{"name":"2017 IEEE Workshop on Microelectronics and Electron Devices (WMED)","volume":"127 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyoxometalate Hybrid Nano-Building Blocks for Extreme Ultra-Violet Photoresists\",\"authors\":\"Brandon Hardie, M. Roll\",\"doi\":\"10.1109/WMED.2017.7916932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme Ultra-violet Lithography (EUVL), regardless of some setbacks, has continued its push as a viable option for next generation nodes of photolithography. Utilizing a 13.5nm wavelength, EUV is still showing promise as a natural progression of optical lithography in the semiconductor industry. Despite this upside, EUVL also has its drawbacks, one of which includes the development of a suitable photoresist material. The development and characterization of polyoxometalate (POM) hybrid nano-building blocks (NBBs) shows great potential as a candidate for improving the patterning of semiconductor devices using EUVL. Octamolybdate macromolecules were synthesized using literature methods. These primary materials were modified for improvements using a combination of physical mixtures with photoacids (resist sensitivity) and epoxide (mechanical stability). In addition, tellurium atoms (EUV absorption) were incorporated chemically and will be explored with similar mixtures to better understand the relatively limited knowledge of POM materials as functional photoresists and dielectric materials.\",\"PeriodicalId\":287760,\"journal\":{\"name\":\"2017 IEEE Workshop on Microelectronics and Electron Devices (WMED)\",\"volume\":\"127 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Workshop on Microelectronics and Electron Devices (WMED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WMED.2017.7916932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Workshop on Microelectronics and Electron Devices (WMED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMED.2017.7916932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

极紫外光刻技术(EUVL)尽管遇到了一些挫折,但仍继续作为下一代光刻技术节点的可行选择。利用13.5nm波长,EUV仍然是半导体行业光学光刻技术的自然发展方向。尽管有这样的优点,EUVL也有它的缺点,其中之一包括开发合适的光刻胶材料。多金属氧酸盐(POM)杂化纳米构建块(NBBs)的开发和表征显示出其作为利用EUVL改善半导体器件图形化的候选材料的巨大潜力。采用文献法合成了八胺氰酸酯大分子。这些主要材料通过光酸(抗蚀敏感性)和环氧化物(机械稳定性)的物理混合物的组合进行了改进。此外,碲原子(EUV吸收)被化学地掺入,并将与类似的混合物进行探索,以更好地了解POM材料作为功能光阻剂和介电材料的相对有限的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polyoxometalate Hybrid Nano-Building Blocks for Extreme Ultra-Violet Photoresists
Extreme Ultra-violet Lithography (EUVL), regardless of some setbacks, has continued its push as a viable option for next generation nodes of photolithography. Utilizing a 13.5nm wavelength, EUV is still showing promise as a natural progression of optical lithography in the semiconductor industry. Despite this upside, EUVL also has its drawbacks, one of which includes the development of a suitable photoresist material. The development and characterization of polyoxometalate (POM) hybrid nano-building blocks (NBBs) shows great potential as a candidate for improving the patterning of semiconductor devices using EUVL. Octamolybdate macromolecules were synthesized using literature methods. These primary materials were modified for improvements using a combination of physical mixtures with photoacids (resist sensitivity) and epoxide (mechanical stability). In addition, tellurium atoms (EUV absorption) were incorporated chemically and will be explored with similar mixtures to better understand the relatively limited knowledge of POM materials as functional photoresists and dielectric materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信