{"title":"用逆动态过程模型控制300MW锅炉过热器蒸汽温度","authors":"Liangyu Ma, Yongjun Lin, Kwang Y. Lee","doi":"10.1109/PES.2010.5589600","DOIUrl":null,"url":null,"abstract":"An Inverse Dynamic Neuro-Controller (IDNC) is developed to improve the superheater steam temperature control of a 300MW boiler unit. A recurrent neural network was used for building the Inverse Dynamic Process Models (IDPMs) for the superheater system. Two inverse dynamic neural network (NN) models referring to the first-stage and the second-stage water-spray attemperators are constructed separately. To achieve highly accurate approximation of the superheater system, the NN models are trained with sufficient historical data in a wide operating range, which consists of both different steady-state conditions and dynamic transients. Then the IDNCs are designed based on the well-trained IDPMs and applied to superheater steam temperature control. In order to eliminate the steady-state control error arisen by the model error, a simple feedback PID compensator is added to an inverse controller. Detailed control tests are carried out on a full-scope simulator for a 300MW coal-fired power generating unit. It is shown that the temperature control is greatly improved with the IDNCs compared to the original cascaded PID control scheme.","PeriodicalId":177545,"journal":{"name":"IEEE PES General Meeting","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Superheater steam temperature control for a 300MW boiler unit with Inverse Dynamic Process Models\",\"authors\":\"Liangyu Ma, Yongjun Lin, Kwang Y. Lee\",\"doi\":\"10.1109/PES.2010.5589600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An Inverse Dynamic Neuro-Controller (IDNC) is developed to improve the superheater steam temperature control of a 300MW boiler unit. A recurrent neural network was used for building the Inverse Dynamic Process Models (IDPMs) for the superheater system. Two inverse dynamic neural network (NN) models referring to the first-stage and the second-stage water-spray attemperators are constructed separately. To achieve highly accurate approximation of the superheater system, the NN models are trained with sufficient historical data in a wide operating range, which consists of both different steady-state conditions and dynamic transients. Then the IDNCs are designed based on the well-trained IDPMs and applied to superheater steam temperature control. In order to eliminate the steady-state control error arisen by the model error, a simple feedback PID compensator is added to an inverse controller. Detailed control tests are carried out on a full-scope simulator for a 300MW coal-fired power generating unit. It is shown that the temperature control is greatly improved with the IDNCs compared to the original cascaded PID control scheme.\",\"PeriodicalId\":177545,\"journal\":{\"name\":\"IEEE PES General Meeting\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE PES General Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PES.2010.5589600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE PES General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PES.2010.5589600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Superheater steam temperature control for a 300MW boiler unit with Inverse Dynamic Process Models
An Inverse Dynamic Neuro-Controller (IDNC) is developed to improve the superheater steam temperature control of a 300MW boiler unit. A recurrent neural network was used for building the Inverse Dynamic Process Models (IDPMs) for the superheater system. Two inverse dynamic neural network (NN) models referring to the first-stage and the second-stage water-spray attemperators are constructed separately. To achieve highly accurate approximation of the superheater system, the NN models are trained with sufficient historical data in a wide operating range, which consists of both different steady-state conditions and dynamic transients. Then the IDNCs are designed based on the well-trained IDPMs and applied to superheater steam temperature control. In order to eliminate the steady-state control error arisen by the model error, a simple feedback PID compensator is added to an inverse controller. Detailed control tests are carried out on a full-scope simulator for a 300MW coal-fired power generating unit. It is shown that the temperature control is greatly improved with the IDNCs compared to the original cascaded PID control scheme.