机械应变致LDMOS性能提升的综合研究

Wangran Wu, Siyang Liu, Jing Zhu, Weifeng Sun
{"title":"机械应变致LDMOS性能提升的综合研究","authors":"Wangran Wu, Siyang Liu, Jing Zhu, Weifeng Sun","doi":"10.1109/ISPSD.2018.8393602","DOIUrl":null,"url":null,"abstract":"In this paper, we have comprehensively investigated the performance of LDMOS under mechanical strain. The electrical properties of nLDMOS under uniaxial tensile (UT) strain along channel direction are examined thoroughly. We find that the nLDMOS with longer gate length (Lg) is more preferred for strain. Both lateral electric field (Vd) and vertical electric field (Vg) play an important role on the strain effects. The piezoresistance coefficients of nLDMOS are evaluated for the first time. Neglectable breakdown voltage (Vbd) degradation is observed with the 4.4% drain current (Id) increase under UT strain. Finally, the biaxial tensile strain and uniaxial compressive strain parallel to channel are proved to be most efficient for nLDMOS and pLDMOS with 8.8% and 14.5% Ron reduction, respectively.","PeriodicalId":166809,"journal":{"name":"2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Comprehensive investigation on mechanical strain induced performance boosts in LDMOS\",\"authors\":\"Wangran Wu, Siyang Liu, Jing Zhu, Weifeng Sun\",\"doi\":\"10.1109/ISPSD.2018.8393602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have comprehensively investigated the performance of LDMOS under mechanical strain. The electrical properties of nLDMOS under uniaxial tensile (UT) strain along channel direction are examined thoroughly. We find that the nLDMOS with longer gate length (Lg) is more preferred for strain. Both lateral electric field (Vd) and vertical electric field (Vg) play an important role on the strain effects. The piezoresistance coefficients of nLDMOS are evaluated for the first time. Neglectable breakdown voltage (Vbd) degradation is observed with the 4.4% drain current (Id) increase under UT strain. Finally, the biaxial tensile strain and uniaxial compressive strain parallel to channel are proved to be most efficient for nLDMOS and pLDMOS with 8.8% and 14.5% Ron reduction, respectively.\",\"PeriodicalId\":166809,\"journal\":{\"name\":\"2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPSD.2018.8393602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2018.8393602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文全面研究了LDMOS在机械应变下的性能。研究了nLDMOS在沟道方向单轴拉伸(UT)应变下的电学性能。我们发现栅极长度(Lg)较长的nLDMOS更适合应变。侧向电场(Vd)和垂直电场(Vg)对应变效应都有重要影响。首次计算了nLDMOS的压阻系数。在UT应变下,漏极电流(Id)增加4.4%,击穿电压(Vbd)下降可以忽略不计。最后,平行于通道的双轴拉伸应变和单轴压缩应变对nLDMOS和pLDMOS最有效,分别降低了8.8%和14.5%的Ron。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive investigation on mechanical strain induced performance boosts in LDMOS
In this paper, we have comprehensively investigated the performance of LDMOS under mechanical strain. The electrical properties of nLDMOS under uniaxial tensile (UT) strain along channel direction are examined thoroughly. We find that the nLDMOS with longer gate length (Lg) is more preferred for strain. Both lateral electric field (Vd) and vertical electric field (Vg) play an important role on the strain effects. The piezoresistance coefficients of nLDMOS are evaluated for the first time. Neglectable breakdown voltage (Vbd) degradation is observed with the 4.4% drain current (Id) increase under UT strain. Finally, the biaxial tensile strain and uniaxial compressive strain parallel to channel are proved to be most efficient for nLDMOS and pLDMOS with 8.8% and 14.5% Ron reduction, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信