Sadaf Javed, Ch. Jabbar Younis, Mehboob Alam, Y. Massoud
{"title":"用于图像处理的9/7离散小波变换VLSI架构设计","authors":"Sadaf Javed, Ch. Jabbar Younis, Mehboob Alam, Y. Massoud","doi":"10.1109/MWSCAS.2019.8885044","DOIUrl":null,"url":null,"abstract":"In image processing, transform coding de-correlates images to pre-condition them for efficient compression. In this work, we propose VLSI architecture design of a hardware-efficient 9/7 Discrete Wavelet Transform (DWT). The architecture takes advantage of Canonical Signed Digit (CSD) and Distributed Arithmetic (DA) to represent and optimally distribute co-efficients to reduce the number of adder and shift registers. In addition, the co-efficient multiplication also exploits the horizontal and vertical redundancy in the architecture to reduce the hardware computational complexity. The result is a filter-based design, exploiting hardware path of architecture using CSD coefficients, which finds minimum realization. The proposed architecture is simulated using Verilog Hardware Description Language (HDL). A comparison with other architectures of 9/7 DWT shows a 18.75% reduction in hardware. The result is a hardware-efficient architecture, which provides a low-power solution for image and signal processing applications.","PeriodicalId":287815,"journal":{"name":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"VLSI Architecture Design of 9/7 Discrete Wavelet Transform for Image Processing\",\"authors\":\"Sadaf Javed, Ch. Jabbar Younis, Mehboob Alam, Y. Massoud\",\"doi\":\"10.1109/MWSCAS.2019.8885044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In image processing, transform coding de-correlates images to pre-condition them for efficient compression. In this work, we propose VLSI architecture design of a hardware-efficient 9/7 Discrete Wavelet Transform (DWT). The architecture takes advantage of Canonical Signed Digit (CSD) and Distributed Arithmetic (DA) to represent and optimally distribute co-efficients to reduce the number of adder and shift registers. In addition, the co-efficient multiplication also exploits the horizontal and vertical redundancy in the architecture to reduce the hardware computational complexity. The result is a filter-based design, exploiting hardware path of architecture using CSD coefficients, which finds minimum realization. The proposed architecture is simulated using Verilog Hardware Description Language (HDL). A comparison with other architectures of 9/7 DWT shows a 18.75% reduction in hardware. The result is a hardware-efficient architecture, which provides a low-power solution for image and signal processing applications.\",\"PeriodicalId\":287815,\"journal\":{\"name\":\"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2019.8885044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2019.8885044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
VLSI Architecture Design of 9/7 Discrete Wavelet Transform for Image Processing
In image processing, transform coding de-correlates images to pre-condition them for efficient compression. In this work, we propose VLSI architecture design of a hardware-efficient 9/7 Discrete Wavelet Transform (DWT). The architecture takes advantage of Canonical Signed Digit (CSD) and Distributed Arithmetic (DA) to represent and optimally distribute co-efficients to reduce the number of adder and shift registers. In addition, the co-efficient multiplication also exploits the horizontal and vertical redundancy in the architecture to reduce the hardware computational complexity. The result is a filter-based design, exploiting hardware path of architecture using CSD coefficients, which finds minimum realization. The proposed architecture is simulated using Verilog Hardware Description Language (HDL). A comparison with other architectures of 9/7 DWT shows a 18.75% reduction in hardware. The result is a hardware-efficient architecture, which provides a low-power solution for image and signal processing applications.