Bogdan-Ionut Craciun, T. Kerekes, D. Sera, R. Teodorescu, R. Brandl, T. Degner, D. Geibel, H. Hernandez
{"title":"基于PHIL测试的光伏并网,采用不同的接口算法","authors":"Bogdan-Ionut Craciun, T. Kerekes, D. Sera, R. Teodorescu, R. Brandl, T. Degner, D. Geibel, H. Hernandez","doi":"10.1109/IECON.2013.6700011","DOIUrl":null,"url":null,"abstract":"Photovoltaic (PV) power among all renewable energies had the most accelerated growth rate in terms of installed capacity in recent years. Transmission System Operators (TSOs) changed their perspective about PV power and started to include it into their planning and operation, imposing PV systems to be more active in grid support. Therefore, a better understanding and detailed analysis of the PV systems interaction with the grid is needed; hence power hardware in the loop (PHIL) testing involving PV power can be a solution to address the testing challenges. To test PV systems for grid code (GC) compliance and supply of ancillary services, first the grid has to be simulated using PHIL, but in order to achieve it, different interface algorithms (IA) had to be evaluated in terms of system stability and signal accuracy.","PeriodicalId":237327,"journal":{"name":"IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Grid integration of PV power based on PHIL testing using different interface algorithms\",\"authors\":\"Bogdan-Ionut Craciun, T. Kerekes, D. Sera, R. Teodorescu, R. Brandl, T. Degner, D. Geibel, H. Hernandez\",\"doi\":\"10.1109/IECON.2013.6700011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photovoltaic (PV) power among all renewable energies had the most accelerated growth rate in terms of installed capacity in recent years. Transmission System Operators (TSOs) changed their perspective about PV power and started to include it into their planning and operation, imposing PV systems to be more active in grid support. Therefore, a better understanding and detailed analysis of the PV systems interaction with the grid is needed; hence power hardware in the loop (PHIL) testing involving PV power can be a solution to address the testing challenges. To test PV systems for grid code (GC) compliance and supply of ancillary services, first the grid has to be simulated using PHIL, but in order to achieve it, different interface algorithms (IA) had to be evaluated in terms of system stability and signal accuracy.\",\"PeriodicalId\":237327,\"journal\":{\"name\":\"IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2013.6700011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2013.6700011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Grid integration of PV power based on PHIL testing using different interface algorithms
Photovoltaic (PV) power among all renewable energies had the most accelerated growth rate in terms of installed capacity in recent years. Transmission System Operators (TSOs) changed their perspective about PV power and started to include it into their planning and operation, imposing PV systems to be more active in grid support. Therefore, a better understanding and detailed analysis of the PV systems interaction with the grid is needed; hence power hardware in the loop (PHIL) testing involving PV power can be a solution to address the testing challenges. To test PV systems for grid code (GC) compliance and supply of ancillary services, first the grid has to be simulated using PHIL, but in order to achieve it, different interface algorithms (IA) had to be evaluated in terms of system stability and signal accuracy.