估计离群值概率

Richard A. Bauder, T. Khoshgoftaar
{"title":"估计离群值概率","authors":"Richard A. Bauder, T. Khoshgoftaar","doi":"10.1109/IRI.2017.19","DOIUrl":null,"url":null,"abstract":"Outlier detection is a critical function across a diverse range of tasks and domains. There are numerous outlier detection methods, the majority of which produce scores to indicate an outlier versus inlier. An issue with these scores is that they can be difficult to interpret and do not allow for comparisons between different methods. One solution is to convert the outlier score to probabilities. These probability estimates can provide understandable and meaningful results for assessing outlying values. Moreover, the probabilities can be combined to produce an ensemble of outlier detection methods, further enhancing the detection of outliers. In this paper, we propose a unique approach leveraging probabilistic programming to fit the original outlier score distributions to a 3-parameter Lognormal distribution. We provide empirical evidence for the use of this distribution, compare the probability estimates with the outlier scores, discuss confidence in these estimates, evaluate detection performance via the probabilities, and provide an ensemble detection example. Our research indicates this approach reasonably models the original outlier scores, resulting in meaningful outlier probability estimates.","PeriodicalId":254330,"journal":{"name":"2017 IEEE International Conference on Information Reuse and Integration (IRI)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimating Outlier Score Probabilities\",\"authors\":\"Richard A. Bauder, T. Khoshgoftaar\",\"doi\":\"10.1109/IRI.2017.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outlier detection is a critical function across a diverse range of tasks and domains. There are numerous outlier detection methods, the majority of which produce scores to indicate an outlier versus inlier. An issue with these scores is that they can be difficult to interpret and do not allow for comparisons between different methods. One solution is to convert the outlier score to probabilities. These probability estimates can provide understandable and meaningful results for assessing outlying values. Moreover, the probabilities can be combined to produce an ensemble of outlier detection methods, further enhancing the detection of outliers. In this paper, we propose a unique approach leveraging probabilistic programming to fit the original outlier score distributions to a 3-parameter Lognormal distribution. We provide empirical evidence for the use of this distribution, compare the probability estimates with the outlier scores, discuss confidence in these estimates, evaluate detection performance via the probabilities, and provide an ensemble detection example. Our research indicates this approach reasonably models the original outlier scores, resulting in meaningful outlier probability estimates.\",\"PeriodicalId\":254330,\"journal\":{\"name\":\"2017 IEEE International Conference on Information Reuse and Integration (IRI)\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Information Reuse and Integration (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2017.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Information Reuse and Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2017.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

异常值检测是跨各种任务和领域的关键功能。有许多异常值检测方法,其中大多数产生分数来指示异常值与内值。这些分数的一个问题是,它们很难解释,不允许不同方法之间的比较。一种解决方案是将异常值得分转换为概率。这些概率估计可以为评估离群值提供可理解和有意义的结果。此外,这些概率可以组合成一个异常点检测方法的集合,进一步增强了异常点的检测。在本文中,我们提出了一种独特的方法,利用概率规划来拟合原始离群值分布到3参数对数正态分布。我们为使用该分布提供了经验证据,比较了概率估计与离群值得分,讨论了这些估计的置信度,通过概率评估检测性能,并提供了一个集成检测示例。我们的研究表明,这种方法合理地模拟了原始的异常值得分,从而产生了有意义的异常值概率估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Outlier Score Probabilities
Outlier detection is a critical function across a diverse range of tasks and domains. There are numerous outlier detection methods, the majority of which produce scores to indicate an outlier versus inlier. An issue with these scores is that they can be difficult to interpret and do not allow for comparisons between different methods. One solution is to convert the outlier score to probabilities. These probability estimates can provide understandable and meaningful results for assessing outlying values. Moreover, the probabilities can be combined to produce an ensemble of outlier detection methods, further enhancing the detection of outliers. In this paper, we propose a unique approach leveraging probabilistic programming to fit the original outlier score distributions to a 3-parameter Lognormal distribution. We provide empirical evidence for the use of this distribution, compare the probability estimates with the outlier scores, discuss confidence in these estimates, evaluate detection performance via the probabilities, and provide an ensemble detection example. Our research indicates this approach reasonably models the original outlier scores, resulting in meaningful outlier probability estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信