有限采样自动文档处理系统分类器的开发

A. Korotynskyi, O. Zhuchenko
{"title":"有限采样自动文档处理系统分类器的开发","authors":"A. Korotynskyi, O. Zhuchenko","doi":"10.1109/ATIT50783.2020.9349303","DOIUrl":null,"url":null,"abstract":"the work is aimed at solving the current problem of automatic recognition and processing of scan/photo of documents. To solve this problem, the work uses approaches to artificial intelligence, namely artificial neural networks. The main difference between this work and the existing ones today is the solution of the described problem in conditions of limited sampling. The approaches of neural networks pre-learning using the well-known structure of the autoencoder, data augmentation and minimization of parameters were used to achieve an effective solution at minimal cost.","PeriodicalId":312916,"journal":{"name":"2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Classifier for the System of Automatic Document Processing with Limited Sampling\",\"authors\":\"A. Korotynskyi, O. Zhuchenko\",\"doi\":\"10.1109/ATIT50783.2020.9349303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"the work is aimed at solving the current problem of automatic recognition and processing of scan/photo of documents. To solve this problem, the work uses approaches to artificial intelligence, namely artificial neural networks. The main difference between this work and the existing ones today is the solution of the described problem in conditions of limited sampling. The approaches of neural networks pre-learning using the well-known structure of the autoencoder, data augmentation and minimization of parameters were used to achieve an effective solution at minimal cost.\",\"PeriodicalId\":312916,\"journal\":{\"name\":\"2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATIT50783.2020.9349303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATIT50783.2020.9349303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该工作旨在解决当前文档扫描/照片的自动识别和处理问题。为了解决这个问题,这项工作使用了人工智能的方法,即人工神经网络。这项工作与现有工作的主要区别在于在有限采样条件下解决所描述的问题。采用神经网络预学习的方法,利用众所周知的自编码器结构,数据增强和参数最小化,以最小的成本获得有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a Classifier for the System of Automatic Document Processing with Limited Sampling
the work is aimed at solving the current problem of automatic recognition and processing of scan/photo of documents. To solve this problem, the work uses approaches to artificial intelligence, namely artificial neural networks. The main difference between this work and the existing ones today is the solution of the described problem in conditions of limited sampling. The approaches of neural networks pre-learning using the well-known structure of the autoencoder, data augmentation and minimization of parameters were used to achieve an effective solution at minimal cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信