简单欠驱动三维双足机器人的渐近稳定行走

C. Shih, J. Grizzle, C. Chevallereau
{"title":"简单欠驱动三维双足机器人的渐近稳定行走","authors":"C. Shih, J. Grizzle, C. Chevallereau","doi":"10.1109/IECON.2007.4460177","DOIUrl":null,"url":null,"abstract":"This paper presents a feedback controller that achieves an asymptotically stable, periodic, and fast walking gait for a 3D bipedal robot consisting of 3-links and passive (unactuated) point-feet. The robot has 6 DOF in the single support phase and four actuators. In addition to the reduced number of actuators, the interest of studying robots with point feet is that the feedback control solution must exploit the robot's natural dynamics in order to achieve balance while walking. We use an extension of the method of virtual constraints, a very successful method for planar bipeds, in order to simultaneously compute a periodic orbit and an autonomous feedback controller that realizes the orbit, for a 3D (spatial) bipedal walking robot. This method allows the computations for the controller design and the periodic orbit to be carried out on a 2-DOF subsystem of the 6-DOF robot model. The linearization of the Poincare map of the closed-loop system proves that the achieved periodic walking motion, at a speed of approximately one and a half body lengths per second, is exponentially stable.","PeriodicalId":199609,"journal":{"name":"IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Asymptotically Stable Walking of a Simple Underactuated 3D Bipedal Robot\",\"authors\":\"C. Shih, J. Grizzle, C. Chevallereau\",\"doi\":\"10.1109/IECON.2007.4460177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a feedback controller that achieves an asymptotically stable, periodic, and fast walking gait for a 3D bipedal robot consisting of 3-links and passive (unactuated) point-feet. The robot has 6 DOF in the single support phase and four actuators. In addition to the reduced number of actuators, the interest of studying robots with point feet is that the feedback control solution must exploit the robot's natural dynamics in order to achieve balance while walking. We use an extension of the method of virtual constraints, a very successful method for planar bipeds, in order to simultaneously compute a periodic orbit and an autonomous feedback controller that realizes the orbit, for a 3D (spatial) bipedal walking robot. This method allows the computations for the controller design and the periodic orbit to be carried out on a 2-DOF subsystem of the 6-DOF robot model. The linearization of the Poincare map of the closed-loop system proves that the achieved periodic walking motion, at a speed of approximately one and a half body lengths per second, is exponentially stable.\",\"PeriodicalId\":199609,\"journal\":{\"name\":\"IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2007.4460177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2007.4460177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

本文提出了一种反馈控制器,用于实现由三连杆和被动(非驱动)点足组成的三维双足机器人的渐近稳定、周期和快速行走步态。该机器人在单支撑阶段具有6自由度和4个执行机构。除了驱动器数量的减少,研究尖足机器人的兴趣在于反馈控制方案必须利用机器人的自然动力学,以便在行走时实现平衡。为了同时计算一个三维(空间)双足步行机器人的周期轨道和实现轨道的自主反馈控制器,我们采用了一种非常成功的平面双足步行方法——虚拟约束方法的扩展。该方法允许在六自由度机器人模型的二自由度子系统上进行控制器设计和周期轨道的计算。通过对闭环系统庞加莱映射的线性化,证明了所实现的周期步行运动以大约1.5个体长/秒的速度是指数稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotically Stable Walking of a Simple Underactuated 3D Bipedal Robot
This paper presents a feedback controller that achieves an asymptotically stable, periodic, and fast walking gait for a 3D bipedal robot consisting of 3-links and passive (unactuated) point-feet. The robot has 6 DOF in the single support phase and four actuators. In addition to the reduced number of actuators, the interest of studying robots with point feet is that the feedback control solution must exploit the robot's natural dynamics in order to achieve balance while walking. We use an extension of the method of virtual constraints, a very successful method for planar bipeds, in order to simultaneously compute a periodic orbit and an autonomous feedback controller that realizes the orbit, for a 3D (spatial) bipedal walking robot. This method allows the computations for the controller design and the periodic orbit to be carried out on a 2-DOF subsystem of the 6-DOF robot model. The linearization of the Poincare map of the closed-loop system proves that the achieved periodic walking motion, at a speed of approximately one and a half body lengths per second, is exponentially stable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信