时间感知网络终端系统中速率约束流量的调度

Oana Hotescu, A. Finzi
{"title":"时间感知网络终端系统中速率约束流量的调度","authors":"Oana Hotescu, A. Finzi","doi":"10.1109/ETFA45728.2021.9613713","DOIUrl":null,"url":null,"abstract":"Nowadays, most of cyber-physical systems in avionics, automotive or recent Industry 4.0 domains require networked communication for mixed-critical applications. Ethernet-based networks such as AFDX, TTEthernet or TSN are capable to support transmission of both safety-critical and non-critical flows. This paper focuses on the TTEthernet network compliant with the avionics ARINC 664-P7 standard supporting time-triggered communication (TT) together with rate-constrained (RC) and best-effort (BE) traffic. Due to a global synchronization, TT communication with low latency and minimal jitter is ensured with static schedules computed offline. For event-triggered RC flows, bounded jitter at the source and end-to-end latency are guaranteed with worst-case analysis methods. With the increasing demands of applications, flows with Quality of Service (QoS) requirements such as video or audio may be transmitted as BE flows. However, on current configurations, no guarantees are offered to BE flows. In this paper, we aim at increasing the maximum RC utilization and improving the QoS of BE flows to allow the transmission of video or audio traffic with low jitter and end-to-end delay requirements. For this, we focus on the scheduling mechanisms and propose a scheduling approach based on a static slotted table that is applied at end systems. This table integrates the TT schedules usually obtained with Satisfiability Modulo Theories (SMT) approaches and establishes offsets of RC flows that reduce the end-to-end delay of BE flows. Several strategies for offset computations are proposed based on the distribution of flows locally at end system or globally at switch. We show that local strategies perform better than the global ones to reduce end-to-end delay of BE flows.","PeriodicalId":312498,"journal":{"name":"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scheduling Rate Constrained traffic in End Systems of Time-Aware Networks\",\"authors\":\"Oana Hotescu, A. Finzi\",\"doi\":\"10.1109/ETFA45728.2021.9613713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, most of cyber-physical systems in avionics, automotive or recent Industry 4.0 domains require networked communication for mixed-critical applications. Ethernet-based networks such as AFDX, TTEthernet or TSN are capable to support transmission of both safety-critical and non-critical flows. This paper focuses on the TTEthernet network compliant with the avionics ARINC 664-P7 standard supporting time-triggered communication (TT) together with rate-constrained (RC) and best-effort (BE) traffic. Due to a global synchronization, TT communication with low latency and minimal jitter is ensured with static schedules computed offline. For event-triggered RC flows, bounded jitter at the source and end-to-end latency are guaranteed with worst-case analysis methods. With the increasing demands of applications, flows with Quality of Service (QoS) requirements such as video or audio may be transmitted as BE flows. However, on current configurations, no guarantees are offered to BE flows. In this paper, we aim at increasing the maximum RC utilization and improving the QoS of BE flows to allow the transmission of video or audio traffic with low jitter and end-to-end delay requirements. For this, we focus on the scheduling mechanisms and propose a scheduling approach based on a static slotted table that is applied at end systems. This table integrates the TT schedules usually obtained with Satisfiability Modulo Theories (SMT) approaches and establishes offsets of RC flows that reduce the end-to-end delay of BE flows. Several strategies for offset computations are proposed based on the distribution of flows locally at end system or globally at switch. We show that local strategies perform better than the global ones to reduce end-to-end delay of BE flows.\",\"PeriodicalId\":312498,\"journal\":{\"name\":\"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA45728.2021.9613713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA45728.2021.9613713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

如今,航空电子、汽车或最近的工业4.0领域的大多数网络物理系统都需要混合关键应用的网络通信。基于以太网的网络,如AFDX、tteethernet或TSN能够支持安全关键和非关键流的传输。本文重点研究了符合航空电子ARINC 664-P7标准的支持时间触发通信(TT)以及速率约束(RC)和最大努力(BE)业务的tteethernet网络。由于全局同步,确保TT通信具有低延迟和最小抖动,静态调度离线计算。对于事件触发的RC流,使用最坏情况分析方法可以保证源端有界抖动和端到端延迟。随着应用需求的不断增长,视频、音频等有QoS要求的流可能会以be流的形式传输。然而,在当前的配置中,没有向BE流提供任何保证。在本文中,我们的目标是提高最大RC利用率和改进BE流的QoS,以允许传输具有低抖动和端到端延迟要求的视频或音频流量。为此,我们重点研究了调度机制,并提出了一种应用于终端系统的基于静态槽表的调度方法。该表集成了通常通过可满足模理论(SMT)方法获得的TT调度,并建立了RC流的偏移量,以减少BE流的端到端延迟。提出了几种基于终端系统局部或交换机全局流分布的偏移量计算策略。我们证明了局部策略比全局策略在减少BE流的端到端延迟方面表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scheduling Rate Constrained traffic in End Systems of Time-Aware Networks
Nowadays, most of cyber-physical systems in avionics, automotive or recent Industry 4.0 domains require networked communication for mixed-critical applications. Ethernet-based networks such as AFDX, TTEthernet or TSN are capable to support transmission of both safety-critical and non-critical flows. This paper focuses on the TTEthernet network compliant with the avionics ARINC 664-P7 standard supporting time-triggered communication (TT) together with rate-constrained (RC) and best-effort (BE) traffic. Due to a global synchronization, TT communication with low latency and minimal jitter is ensured with static schedules computed offline. For event-triggered RC flows, bounded jitter at the source and end-to-end latency are guaranteed with worst-case analysis methods. With the increasing demands of applications, flows with Quality of Service (QoS) requirements such as video or audio may be transmitted as BE flows. However, on current configurations, no guarantees are offered to BE flows. In this paper, we aim at increasing the maximum RC utilization and improving the QoS of BE flows to allow the transmission of video or audio traffic with low jitter and end-to-end delay requirements. For this, we focus on the scheduling mechanisms and propose a scheduling approach based on a static slotted table that is applied at end systems. This table integrates the TT schedules usually obtained with Satisfiability Modulo Theories (SMT) approaches and establishes offsets of RC flows that reduce the end-to-end delay of BE flows. Several strategies for offset computations are proposed based on the distribution of flows locally at end system or globally at switch. We show that local strategies perform better than the global ones to reduce end-to-end delay of BE flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信