利用机器学习方法分析影响金融组织的恶意软件威胁

Romil Rawat, Yagyanath Rimal, P. William, Snehil Dahima, Sonali Gupta, K. Sankaran
{"title":"利用机器学习方法分析影响金融组织的恶意软件威胁","authors":"Romil Rawat, Yagyanath Rimal, P. William, Snehil Dahima, Sonali Gupta, K. Sankaran","doi":"10.4018/ijitwe.304051","DOIUrl":null,"url":null,"abstract":"Since 2014, Emotet has been using Man-in-the-Browsers (MITB) attacks to target companies in the finance industry and their clients. Its key aim is to steal victims' online money-lending records and vital credentials as they go to their banks' websites. Without analyzing network packet payload computing (PPC), IP address labels, port number traces, or protocol knowledge, we have used Machine Learning (ML) modeling to detect Emotet malware infections and recognize Emotet related congestion flows in this work. To classify emotet associated flows and detect emotet infections, the output outcome values are compared by four separate popular ML algorithms: RF (Random Forest), MLP (Multi-Layer Perceptron), SMO (Sequential Minimal Optimization Technique), and the LRM (Logistic Regression Model). The suggested classifier is then improved by determining the right hyperparameter and attribute set range. Using network packet (computation) identifiers, the Random Forest classifier detects emotet-based flows with 99.9726 percent precision and a 92.3 percent true positive rating.","PeriodicalId":222340,"journal":{"name":"Int. J. Inf. Technol. Web Eng.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Malware Threat Affecting Financial Organization Analysis Using Machine Learning Approach\",\"authors\":\"Romil Rawat, Yagyanath Rimal, P. William, Snehil Dahima, Sonali Gupta, K. Sankaran\",\"doi\":\"10.4018/ijitwe.304051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since 2014, Emotet has been using Man-in-the-Browsers (MITB) attacks to target companies in the finance industry and their clients. Its key aim is to steal victims' online money-lending records and vital credentials as they go to their banks' websites. Without analyzing network packet payload computing (PPC), IP address labels, port number traces, or protocol knowledge, we have used Machine Learning (ML) modeling to detect Emotet malware infections and recognize Emotet related congestion flows in this work. To classify emotet associated flows and detect emotet infections, the output outcome values are compared by four separate popular ML algorithms: RF (Random Forest), MLP (Multi-Layer Perceptron), SMO (Sequential Minimal Optimization Technique), and the LRM (Logistic Regression Model). The suggested classifier is then improved by determining the right hyperparameter and attribute set range. Using network packet (computation) identifiers, the Random Forest classifier detects emotet-based flows with 99.9726 percent precision and a 92.3 percent true positive rating.\",\"PeriodicalId\":222340,\"journal\":{\"name\":\"Int. J. Inf. Technol. Web Eng.\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Technol. Web Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijitwe.304051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Web Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitwe.304051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

自2014年以来,Emotet一直在使用中间人攻击(MITB)来攻击金融行业的公司及其客户。它的主要目标是在受害者访问银行网站时窃取他们的在线贷款记录和重要凭证。在不分析网络数据包有效载荷计算(PPC)、IP地址标签、端口号跟踪或协议知识的情况下,我们使用机器学习(ML)建模来检测Emotet恶意软件感染并识别Emotet相关的拥塞流。为了对表情相关流进行分类并检测表情感染,输出结果值通过四种不同的流行ML算法进行比较:RF(随机森林),MLP(多层感知器),SMO(顺序最小优化技术)和LRM(逻辑回归模型)。然后通过确定正确的超参数和属性集范围来改进建议的分类器。使用网络数据包(计算)标识符,Random Forest分类器以99.9726%的精度和92.3%的真正评级检测基于表情的流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Malware Threat Affecting Financial Organization Analysis Using Machine Learning Approach
Since 2014, Emotet has been using Man-in-the-Browsers (MITB) attacks to target companies in the finance industry and their clients. Its key aim is to steal victims' online money-lending records and vital credentials as they go to their banks' websites. Without analyzing network packet payload computing (PPC), IP address labels, port number traces, or protocol knowledge, we have used Machine Learning (ML) modeling to detect Emotet malware infections and recognize Emotet related congestion flows in this work. To classify emotet associated flows and detect emotet infections, the output outcome values are compared by four separate popular ML algorithms: RF (Random Forest), MLP (Multi-Layer Perceptron), SMO (Sequential Minimal Optimization Technique), and the LRM (Logistic Regression Model). The suggested classifier is then improved by determining the right hyperparameter and attribute set range. Using network packet (computation) identifiers, the Random Forest classifier detects emotet-based flows with 99.9726 percent precision and a 92.3 percent true positive rating.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信