基于压电ZnO纳米线的柔性复合发电机最优负载仿真与自动化表征

D. Menin, M. Parmar, R. Tao, P. Oliveira, M. Mouis, L. Selmi, G. Ardila
{"title":"基于压电ZnO纳米线的柔性复合发电机最优负载仿真与自动化表征","authors":"D. Menin, M. Parmar, R. Tao, P. Oliveira, M. Mouis, L. Selmi, G. Ardila","doi":"10.1109/ULIS.2018.8354762","DOIUrl":null,"url":null,"abstract":"This paper reports the experimental and numerical study of flexible piezoelectric transducers made of a thin active composite material (∼3 μm thick) over a thin flexible metallic foil (∼25 μm of stainless steel). The active piezo-layer consists of vertical ZnO nanowires (NWs) embedded into dielectric fillers of different composition. The voltage over a known resistance was measured with an automatic bending setup, and the corresponding power was computed and compared to numerical simulations as a function of load resistance and dielectric matrix in the composite structure. FEM simulations show that the output power can be higher than conventional thin-film devices. These results confirm previous findings and provide important guidelines to optimize flexible piezoelectric transducers for applications as sensors and generators for the Internet of Things. Comparison with a commercial thick-film piezoelectric energy harvester was also made experimentally.","PeriodicalId":383788,"journal":{"name":"2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and automated characterisation of optimal load for flexible composite generators based on piezoelectric ZnO nanowires\",\"authors\":\"D. Menin, M. Parmar, R. Tao, P. Oliveira, M. Mouis, L. Selmi, G. Ardila\",\"doi\":\"10.1109/ULIS.2018.8354762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the experimental and numerical study of flexible piezoelectric transducers made of a thin active composite material (∼3 μm thick) over a thin flexible metallic foil (∼25 μm of stainless steel). The active piezo-layer consists of vertical ZnO nanowires (NWs) embedded into dielectric fillers of different composition. The voltage over a known resistance was measured with an automatic bending setup, and the corresponding power was computed and compared to numerical simulations as a function of load resistance and dielectric matrix in the composite structure. FEM simulations show that the output power can be higher than conventional thin-film devices. These results confirm previous findings and provide important guidelines to optimize flexible piezoelectric transducers for applications as sensors and generators for the Internet of Things. Comparison with a commercial thick-film piezoelectric energy harvester was also made experimentally.\",\"PeriodicalId\":383788,\"journal\":{\"name\":\"2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULIS.2018.8354762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULIS.2018.8354762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了柔性压电换能器的实验和数值研究,该换能器由薄活性复合材料(~ 3 μm厚)在薄柔性金属箔(~ 25 μm不锈钢)上制成。活性压电层由垂直ZnO纳米线(NWs)嵌入不同成分的介电填料组成。利用自动弯曲装置测量了已知电阻上的电压,并计算了相应的功率,并将其作为复合材料结构中负载电阻和介电矩阵的函数与数值模拟进行了比较。有限元模拟结果表明,该器件的输出功率高于传统的薄膜器件。这些结果证实了之前的发现,并为优化柔性压电换能器作为物联网传感器和发电机的应用提供了重要指导。并与商用厚膜压电能量采集器进行了实验比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation and automated characterisation of optimal load for flexible composite generators based on piezoelectric ZnO nanowires
This paper reports the experimental and numerical study of flexible piezoelectric transducers made of a thin active composite material (∼3 μm thick) over a thin flexible metallic foil (∼25 μm of stainless steel). The active piezo-layer consists of vertical ZnO nanowires (NWs) embedded into dielectric fillers of different composition. The voltage over a known resistance was measured with an automatic bending setup, and the corresponding power was computed and compared to numerical simulations as a function of load resistance and dielectric matrix in the composite structure. FEM simulations show that the output power can be higher than conventional thin-film devices. These results confirm previous findings and provide important guidelines to optimize flexible piezoelectric transducers for applications as sensors and generators for the Internet of Things. Comparison with a commercial thick-film piezoelectric energy harvester was also made experimentally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信