Kay Peeters, Tugce G. Martagan, I. Adan, Patrick Cruysen
{"title":"家禽加工厂鱼片配料过程的控制与设计","authors":"Kay Peeters, Tugce G. Martagan, I. Adan, Patrick Cruysen","doi":"10.1109/WSC.2017.8248093","DOIUrl":null,"url":null,"abstract":"In the poultry processing industry demand and supply are still growing in volume and diversity, which requires more processing capacity, flexibility and smarter control. This paper focuses on the fillet batching process. To minimize the giveaway of fixed-weight fillet batching the right choices on layout, buffer sizes, batch sizes and batch allocation policies are of great importance. We develop a simulation model to support such decisions on design and control. The model is used (i) to determine buffer and grader sizes, (ii) to optimize batch allocation in a dedicated layout, (iii) to compare a dedicated to a flexible layout and (iv) to assess the impact of smart allocation policies. In particular we find that significant reductions in giveaway can be achieved by employing so-called index policies in a flexible layout.","PeriodicalId":145780,"journal":{"name":"2017 Winter Simulation Conference (WSC)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Control and design of the fillet batching process in a poultry processing plant\",\"authors\":\"Kay Peeters, Tugce G. Martagan, I. Adan, Patrick Cruysen\",\"doi\":\"10.1109/WSC.2017.8248093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the poultry processing industry demand and supply are still growing in volume and diversity, which requires more processing capacity, flexibility and smarter control. This paper focuses on the fillet batching process. To minimize the giveaway of fixed-weight fillet batching the right choices on layout, buffer sizes, batch sizes and batch allocation policies are of great importance. We develop a simulation model to support such decisions on design and control. The model is used (i) to determine buffer and grader sizes, (ii) to optimize batch allocation in a dedicated layout, (iii) to compare a dedicated to a flexible layout and (iv) to assess the impact of smart allocation policies. In particular we find that significant reductions in giveaway can be achieved by employing so-called index policies in a flexible layout.\",\"PeriodicalId\":145780,\"journal\":{\"name\":\"2017 Winter Simulation Conference (WSC)\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2017.8248093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2017.8248093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control and design of the fillet batching process in a poultry processing plant
In the poultry processing industry demand and supply are still growing in volume and diversity, which requires more processing capacity, flexibility and smarter control. This paper focuses on the fillet batching process. To minimize the giveaway of fixed-weight fillet batching the right choices on layout, buffer sizes, batch sizes and batch allocation policies are of great importance. We develop a simulation model to support such decisions on design and control. The model is used (i) to determine buffer and grader sizes, (ii) to optimize batch allocation in a dedicated layout, (iii) to compare a dedicated to a flexible layout and (iv) to assess the impact of smart allocation policies. In particular we find that significant reductions in giveaway can be achieved by employing so-called index policies in a flexible layout.