结合加速度计数据和Gabor能量特征向量对动态心电信号进行身体运动分类

R. Kher, T. Pawar, V. Thakar
{"title":"结合加速度计数据和Gabor能量特征向量对动态心电信号进行身体运动分类","authors":"R. Kher, T. Pawar, V. Thakar","doi":"10.1109/BMEI.2013.6746974","DOIUrl":null,"url":null,"abstract":"Wearable ambulatory ECG (A-ECG) signals obtained using wearable ECG recorders inherently contain the motion artifacts due to various body movements of the subject. Classification of four such body movement activities (BMA) - left arm up-down, right arm up-down, waist twisting and walking-of five healthy subjects has been performed using artificial neural networks (ANN). The accelerometer data and the Gabor energy feature vectors have been combined to train the ANN. The overall BMA classification accuracy achieved by the ANN classifier is over 95%.","PeriodicalId":163211,"journal":{"name":"2013 6th International Conference on Biomedical Engineering and Informatics","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Combining accelerometer data with Gabor energy feature vectors for body movements classification in ambulatory ECG signals\",\"authors\":\"R. Kher, T. Pawar, V. Thakar\",\"doi\":\"10.1109/BMEI.2013.6746974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable ambulatory ECG (A-ECG) signals obtained using wearable ECG recorders inherently contain the motion artifacts due to various body movements of the subject. Classification of four such body movement activities (BMA) - left arm up-down, right arm up-down, waist twisting and walking-of five healthy subjects has been performed using artificial neural networks (ANN). The accelerometer data and the Gabor energy feature vectors have been combined to train the ANN. The overall BMA classification accuracy achieved by the ANN classifier is over 95%.\",\"PeriodicalId\":163211,\"journal\":{\"name\":\"2013 6th International Conference on Biomedical Engineering and Informatics\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 6th International Conference on Biomedical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEI.2013.6746974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2013.6746974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

使用可穿戴式心电记录仪获得的可穿戴式动态心电图(A-ECG)信号固有地包含由于受试者的各种身体运动而产生的运动伪影。采用人工神经网络(ANN)对5名健康受试者的左臂上下、右臂上下、扭腰和行走四种身体运动活动进行了分类。结合加速度计数据和Gabor能量特征向量训练人工神经网络。ANN分类器的总体BMA分类准确率在95%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining accelerometer data with Gabor energy feature vectors for body movements classification in ambulatory ECG signals
Wearable ambulatory ECG (A-ECG) signals obtained using wearable ECG recorders inherently contain the motion artifacts due to various body movements of the subject. Classification of four such body movement activities (BMA) - left arm up-down, right arm up-down, waist twisting and walking-of five healthy subjects has been performed using artificial neural networks (ANN). The accelerometer data and the Gabor energy feature vectors have been combined to train the ANN. The overall BMA classification accuracy achieved by the ANN classifier is over 95%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信