基于神经网络的包括电源噪声的预强调驱动行为建模

Huan Yu, J. Shin, T. Michalka, M. Larbi, M. Swaminathan
{"title":"基于神经网络的包括电源噪声的预强调驱动行为建模","authors":"Huan Yu, J. Shin, T. Michalka, M. Larbi, M. Swaminathan","doi":"10.1109/LASCAS.2019.8667589","DOIUrl":null,"url":null,"abstract":"This paper addresses the nonlinear behavioral modeling of pre-emphasis drivers including power supply noise. The proposed multiple-port model relies on the use of power-aware weighting functions that control the driver’s output stage to model the pre-emphasis behavior with non-ideal power supply accurately. The weighting functions are implemented using feed-forward neural networks (FFNNs), and the dynamic memory characteristics of driver’s ports are captured using recurrent neural networks (RNNs). Practical industrial driver example demonstrates that the proposed modeling method offers good accuracy, flexibility and significant simulation speed-up to facilitate signal integrity and power integrity analysis without compromising intellectual property (IP).","PeriodicalId":142430,"journal":{"name":"2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Behavioral Modeling of Pre-emphasis Drivers Including Power Supply Noise Using Neural Networks\",\"authors\":\"Huan Yu, J. Shin, T. Michalka, M. Larbi, M. Swaminathan\",\"doi\":\"10.1109/LASCAS.2019.8667589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the nonlinear behavioral modeling of pre-emphasis drivers including power supply noise. The proposed multiple-port model relies on the use of power-aware weighting functions that control the driver’s output stage to model the pre-emphasis behavior with non-ideal power supply accurately. The weighting functions are implemented using feed-forward neural networks (FFNNs), and the dynamic memory characteristics of driver’s ports are captured using recurrent neural networks (RNNs). Practical industrial driver example demonstrates that the proposed modeling method offers good accuracy, flexibility and significant simulation speed-up to facilitate signal integrity and power integrity analysis without compromising intellectual property (IP).\",\"PeriodicalId\":142430,\"journal\":{\"name\":\"2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LASCAS.2019.8667589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS.2019.8667589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了包括电源噪声在内的预强调驱动的非线性行为建模。所提出的多端口模型依赖于使用功率感知加权函数来控制驱动器的输出阶段,以准确地模拟非理想电源下的预强调行为。加权函数采用前馈神经网络(FFNNs)实现,驱动端口的动态记忆特性采用递归神经网络(RNNs)捕获。实际工业驱动程序示例表明,所提出的建模方法具有良好的准确性、灵活性和显著的仿真加速,有助于在不损害知识产权(IP)的情况下进行信号完整性和功率完整性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavioral Modeling of Pre-emphasis Drivers Including Power Supply Noise Using Neural Networks
This paper addresses the nonlinear behavioral modeling of pre-emphasis drivers including power supply noise. The proposed multiple-port model relies on the use of power-aware weighting functions that control the driver’s output stage to model the pre-emphasis behavior with non-ideal power supply accurately. The weighting functions are implemented using feed-forward neural networks (FFNNs), and the dynamic memory characteristics of driver’s ports are captured using recurrent neural networks (RNNs). Practical industrial driver example demonstrates that the proposed modeling method offers good accuracy, flexibility and significant simulation speed-up to facilitate signal integrity and power integrity analysis without compromising intellectual property (IP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信