R. Joshi, R.Q. Williams, E. Nowak, K. Kim, J. Beintner, T. Ludwig, I. Aller, C. Chuang
{"title":"用于高性能低功耗应用的FinFET SRAM","authors":"R. Joshi, R.Q. Williams, E. Nowak, K. Kim, J. Beintner, T. Ludwig, I. Aller, C. Chuang","doi":"10.1109/ESSDER.2004.1356490","DOIUrl":null,"url":null,"abstract":"The SRAM behavior of FinFET technology is investigated and compared with 90 nm node planar partially-depleted silicon-on-insulator (PD-SOI) technology. Unique FinFET circuit behavior in SRAM applications, resulting from the near-ideal device characteristics, is demonstrated by full cell cross section simulation for the first time, and shows high performance and low active and standby power. SRAM stability is analyzed in detail, as compared to PD-SOI.","PeriodicalId":287103,"journal":{"name":"Proceedings of the 30th European Solid-State Circuits Conference (IEEE Cat. No.04EX850)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"FinFET SRAM for high-performance low-power applications\",\"authors\":\"R. Joshi, R.Q. Williams, E. Nowak, K. Kim, J. Beintner, T. Ludwig, I. Aller, C. Chuang\",\"doi\":\"10.1109/ESSDER.2004.1356490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The SRAM behavior of FinFET technology is investigated and compared with 90 nm node planar partially-depleted silicon-on-insulator (PD-SOI) technology. Unique FinFET circuit behavior in SRAM applications, resulting from the near-ideal device characteristics, is demonstrated by full cell cross section simulation for the first time, and shows high performance and low active and standby power. SRAM stability is analyzed in detail, as compared to PD-SOI.\",\"PeriodicalId\":287103,\"journal\":{\"name\":\"Proceedings of the 30th European Solid-State Circuits Conference (IEEE Cat. No.04EX850)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th European Solid-State Circuits Conference (IEEE Cat. No.04EX850)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDER.2004.1356490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th European Solid-State Circuits Conference (IEEE Cat. No.04EX850)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDER.2004.1356490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FinFET SRAM for high-performance low-power applications
The SRAM behavior of FinFET technology is investigated and compared with 90 nm node planar partially-depleted silicon-on-insulator (PD-SOI) technology. Unique FinFET circuit behavior in SRAM applications, resulting from the near-ideal device characteristics, is demonstrated by full cell cross section simulation for the first time, and shows high performance and low active and standby power. SRAM stability is analyzed in detail, as compared to PD-SOI.