基于人工神经网络的高速铣刀剩余使用寿命预测

A. Jain, B. K. Lad
{"title":"基于人工神经网络的高速铣刀剩余使用寿命预测","authors":"A. Jain, B. K. Lad","doi":"10.1109/RACE.2015.7097283","DOIUrl":null,"url":null,"abstract":"Precise Remaining Useful Life (RUL) prediction of cutting tools is crucial for reliable operation and to reduce the maintenance cost. This paper proposes Artificial Neural Network (ANN) based approach for accurate RUL prediction of high speed milling cutters. Developed ANN model uses time and statistical features, selected through stepwise regression feature subset selection technique, as input. By doing this, the strong correlation model is achieved and the performance of cutting tool prognosis is enhanced. An examination is carried out in this work on functioning of distinctive models established with same data. Developed ANN model demonstrates improved performance over conventional Multi-Regression Model (MRM) and Radial Basis Functional Network (RBFN).","PeriodicalId":161131,"journal":{"name":"2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Predicting Remaining Useful Life of high speed milling cutters based on Artificial Neural Network\",\"authors\":\"A. Jain, B. K. Lad\",\"doi\":\"10.1109/RACE.2015.7097283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise Remaining Useful Life (RUL) prediction of cutting tools is crucial for reliable operation and to reduce the maintenance cost. This paper proposes Artificial Neural Network (ANN) based approach for accurate RUL prediction of high speed milling cutters. Developed ANN model uses time and statistical features, selected through stepwise regression feature subset selection technique, as input. By doing this, the strong correlation model is achieved and the performance of cutting tool prognosis is enhanced. An examination is carried out in this work on functioning of distinctive models established with same data. Developed ANN model demonstrates improved performance over conventional Multi-Regression Model (MRM) and Radial Basis Functional Network (RBFN).\",\"PeriodicalId\":161131,\"journal\":{\"name\":\"2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RACE.2015.7097283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RACE.2015.7097283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

刀具剩余使用寿命(RUL)的精确预测对刀具的可靠运行和降低维修成本至关重要。提出了一种基于人工神经网络(ANN)的高速铣刀RUL精确预测方法。所开发的人工神经网络模型使用通过逐步回归特征子集选择技术选择的时间和统计特征作为输入。建立了强相关模型,提高了刀具预测的性能。本文对用相同数据建立的不同模型的功能进行了检验。与传统的多元回归模型(MRM)和径向基泛函网络(RBFN)相比,所开发的人工神经网络具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Remaining Useful Life of high speed milling cutters based on Artificial Neural Network
Precise Remaining Useful Life (RUL) prediction of cutting tools is crucial for reliable operation and to reduce the maintenance cost. This paper proposes Artificial Neural Network (ANN) based approach for accurate RUL prediction of high speed milling cutters. Developed ANN model uses time and statistical features, selected through stepwise regression feature subset selection technique, as input. By doing this, the strong correlation model is achieved and the performance of cutting tool prognosis is enhanced. An examination is carried out in this work on functioning of distinctive models established with same data. Developed ANN model demonstrates improved performance over conventional Multi-Regression Model (MRM) and Radial Basis Functional Network (RBFN).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信