前馈神经网络与迭代线性反投影相结合的电容体层析成像

Almushfi Saputra, W. Taruno, M. Baidillah, D. Handoko
{"title":"前馈神经网络与迭代线性反投影相结合的电容体层析成像","authors":"Almushfi Saputra, W. Taruno, M. Baidillah, D. Handoko","doi":"10.1109/APCASE.2014.6924480","DOIUrl":null,"url":null,"abstract":"In Electrical Capacitance Volume Tomography, the internal permittivity distribution of a region of interest has a nonlinear relationship with the measured capacitance. Most image reconstruction algorithms neglects the nonlinear characteristic and use instead a linearized sensitivity approach to solve the non-linear problem, affecting the accuracy of the reconstructed image. In this study, we used feed-forward neural network to solve the non-linear forward problem to replace the linearized sensitivity matrix. The reconstruction process uses an iterative linear back projection technique. Comparison results showed considerable improvement on the image reconstruction of the proposed technique.","PeriodicalId":118511,"journal":{"name":"2014 Asia-Pacific Conference on Computer Aided System Engineering (APCASE)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Combined feed-forward neural network and iterative linear back projection for Electrical Capacitance Volume Tomography\",\"authors\":\"Almushfi Saputra, W. Taruno, M. Baidillah, D. Handoko\",\"doi\":\"10.1109/APCASE.2014.6924480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Electrical Capacitance Volume Tomography, the internal permittivity distribution of a region of interest has a nonlinear relationship with the measured capacitance. Most image reconstruction algorithms neglects the nonlinear characteristic and use instead a linearized sensitivity approach to solve the non-linear problem, affecting the accuracy of the reconstructed image. In this study, we used feed-forward neural network to solve the non-linear forward problem to replace the linearized sensitivity matrix. The reconstruction process uses an iterative linear back projection technique. Comparison results showed considerable improvement on the image reconstruction of the proposed technique.\",\"PeriodicalId\":118511,\"journal\":{\"name\":\"2014 Asia-Pacific Conference on Computer Aided System Engineering (APCASE)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Asia-Pacific Conference on Computer Aided System Engineering (APCASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCASE.2014.6924480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Asia-Pacific Conference on Computer Aided System Engineering (APCASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCASE.2014.6924480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在电容体层析成像中,感兴趣区域的内部介电常数分布与被测电容呈非线性关系。大多数图像重建算法忽略了非线性特性,而是采用线性化的灵敏度方法来解决非线性问题,影响了重建图像的精度。在本研究中,我们使用前馈神经网络来解决非线性前向问题,以取代线性化的灵敏度矩阵。重建过程采用迭代线性反投影技术。对比结果表明,该方法在图像重建方面有较大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined feed-forward neural network and iterative linear back projection for Electrical Capacitance Volume Tomography
In Electrical Capacitance Volume Tomography, the internal permittivity distribution of a region of interest has a nonlinear relationship with the measured capacitance. Most image reconstruction algorithms neglects the nonlinear characteristic and use instead a linearized sensitivity approach to solve the non-linear problem, affecting the accuracy of the reconstructed image. In this study, we used feed-forward neural network to solve the non-linear forward problem to replace the linearized sensitivity matrix. The reconstruction process uses an iterative linear back projection technique. Comparison results showed considerable improvement on the image reconstruction of the proposed technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信