基于MFCC的支持向量机的救护车警报器检测

D. C. Chinvar, M. Rajat, Ravi L Bellubbi, Sanjay Sampath, Kavita Guddad
{"title":"基于MFCC的支持向量机的救护车警报器检测","authors":"D. C. Chinvar, M. Rajat, Ravi L Bellubbi, Sanjay Sampath, Kavita Guddad","doi":"10.1109/ICMNWC52512.2021.9688340","DOIUrl":null,"url":null,"abstract":"This paper proposes a mechanism to accurately identify ambulance sirens using an audio signal processing technique and an ML algorithm to provide consistent predictions. The improvement in the accuracy of the machine learning model can be attributed to the improved training dataset. Further, since the training dataset can cause a higher computational overhead, this paper proposes a method to achieve a reduction in the dimensionality of the training dataset. The dataset obtained from the Kaggle platform has been compared with the dataset that is created specifically for this study. This comparative study is used to demonstrate the type of dataset that produces the most efficient prediction of ambulance sirens.","PeriodicalId":186283,"journal":{"name":"2021 IEEE International Conference on Mobile Networks and Wireless Communications (ICMNWC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ambulance Siren Detection using an MFCC based Support Vector Machine\",\"authors\":\"D. C. Chinvar, M. Rajat, Ravi L Bellubbi, Sanjay Sampath, Kavita Guddad\",\"doi\":\"10.1109/ICMNWC52512.2021.9688340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a mechanism to accurately identify ambulance sirens using an audio signal processing technique and an ML algorithm to provide consistent predictions. The improvement in the accuracy of the machine learning model can be attributed to the improved training dataset. Further, since the training dataset can cause a higher computational overhead, this paper proposes a method to achieve a reduction in the dimensionality of the training dataset. The dataset obtained from the Kaggle platform has been compared with the dataset that is created specifically for this study. This comparative study is used to demonstrate the type of dataset that produces the most efficient prediction of ambulance sirens.\",\"PeriodicalId\":186283,\"journal\":{\"name\":\"2021 IEEE International Conference on Mobile Networks and Wireless Communications (ICMNWC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Mobile Networks and Wireless Communications (ICMNWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMNWC52512.2021.9688340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mobile Networks and Wireless Communications (ICMNWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMNWC52512.2021.9688340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种使用音频信号处理技术和ML算法来提供一致预测的准确识别救护车警报器的机制。机器学习模型精度的提高可以归功于改进的训练数据集。此外,由于训练数据集可能导致更高的计算开销,本文提出了一种实现训练数据集降维的方法。从Kaggle平台获得的数据集已经与专门为本研究创建的数据集进行了比较。这个比较研究是用来证明数据集的类型,产生最有效的预测救护车警报器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ambulance Siren Detection using an MFCC based Support Vector Machine
This paper proposes a mechanism to accurately identify ambulance sirens using an audio signal processing technique and an ML algorithm to provide consistent predictions. The improvement in the accuracy of the machine learning model can be attributed to the improved training dataset. Further, since the training dataset can cause a higher computational overhead, this paper proposes a method to achieve a reduction in the dimensionality of the training dataset. The dataset obtained from the Kaggle platform has been compared with the dataset that is created specifically for this study. This comparative study is used to demonstrate the type of dataset that produces the most efficient prediction of ambulance sirens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信