{"title":"软指手有限操作的规划与误差补偿","authors":"N. Chong, Donghoon Choi, I. Suh","doi":"10.1109/IROS.1994.407504","DOIUrl":null,"url":null,"abstract":"A hierarchical planning strategy for dextrous manipulation of multifingered hands with soft finger contact model is proposed. Dextrous manipulation planning can be divided into a high-level stage which specifies the position/orientation trajectories of the finger-tips on the object and a low-level stage which determines the contact forces and joint trajectories for the fingers. In the low-level stage, various nonlinear optimization problems are formulated according to the contact modes and integrated into a manipulation planning algorithm to find contact forces and joint velocities at each time step. Montana's contact equations (1988) are used for the high-level planning. A real-time compensation tactics to eliminate the trajectory errors of the object resulted from various uncertainties are also developed. Simulation results are presented and illustrated by employing a three-fingered hand manipulating a sphere to demonstrate the validity of the proposed strategy.<<ETX>>","PeriodicalId":437805,"journal":{"name":"Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Planning and error compensation for finite manipulation of soft-fingered hands\",\"authors\":\"N. Chong, Donghoon Choi, I. Suh\",\"doi\":\"10.1109/IROS.1994.407504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hierarchical planning strategy for dextrous manipulation of multifingered hands with soft finger contact model is proposed. Dextrous manipulation planning can be divided into a high-level stage which specifies the position/orientation trajectories of the finger-tips on the object and a low-level stage which determines the contact forces and joint trajectories for the fingers. In the low-level stage, various nonlinear optimization problems are formulated according to the contact modes and integrated into a manipulation planning algorithm to find contact forces and joint velocities at each time step. Montana's contact equations (1988) are used for the high-level planning. A real-time compensation tactics to eliminate the trajectory errors of the object resulted from various uncertainties are also developed. Simulation results are presented and illustrated by employing a three-fingered hand manipulating a sphere to demonstrate the validity of the proposed strategy.<<ETX>>\",\"PeriodicalId\":437805,\"journal\":{\"name\":\"Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1994.407504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1994.407504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Planning and error compensation for finite manipulation of soft-fingered hands
A hierarchical planning strategy for dextrous manipulation of multifingered hands with soft finger contact model is proposed. Dextrous manipulation planning can be divided into a high-level stage which specifies the position/orientation trajectories of the finger-tips on the object and a low-level stage which determines the contact forces and joint trajectories for the fingers. In the low-level stage, various nonlinear optimization problems are formulated according to the contact modes and integrated into a manipulation planning algorithm to find contact forces and joint velocities at each time step. Montana's contact equations (1988) are used for the high-level planning. A real-time compensation tactics to eliminate the trajectory errors of the object resulted from various uncertainties are also developed. Simulation results are presented and illustrated by employing a three-fingered hand manipulating a sphere to demonstrate the validity of the proposed strategy.<>