连接探照灯:一种利用多变量连接进行MRI信息映射的新方法

Soheil Faridi, J. Richiardi, P. Vuilleumier, D. Ville
{"title":"连接探照灯:一种利用多变量连接进行MRI信息映射的新方法","authors":"Soheil Faridi, J. Richiardi, P. Vuilleumier, D. Ville","doi":"10.1109/ISBI.2013.6556464","DOIUrl":null,"url":null,"abstract":"Brain mapping using magnetic resonance imaging (MRI) is traditionally performed using voxel-wise statistical hypothesis testing. Such mass-univariate approach ignores subtle spatial interactions. The searchlight method, in contrast, uses a multivariate predictive model in each local neighborhood in brain space-named the searchlight. The classification performance is then reported at the center of the searchlight to build an information map. We extend the searchlight technique to take into account additional voxels that can be considered as a meaningful network; i.e., we define a criterion of multivariate connectivity to identify voxels that are statistically dependent on those in searchlight. We coin the term “connectivity searchlight” for the extended searchlight. Using simulated data, we empirically show improved performance for brain regions with low signal-to-noise ratio and recovery of underlying network structures that would otherwise remain hidden. The proposed methodology is general and can be applied to both functional and structural data. We also demonstrate promising results on a well-known fMRI dataset where images of different categories are presented.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Connectivity searchlight: A novel approach for MRI information mapping using multivariate connectivity\",\"authors\":\"Soheil Faridi, J. Richiardi, P. Vuilleumier, D. Ville\",\"doi\":\"10.1109/ISBI.2013.6556464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain mapping using magnetic resonance imaging (MRI) is traditionally performed using voxel-wise statistical hypothesis testing. Such mass-univariate approach ignores subtle spatial interactions. The searchlight method, in contrast, uses a multivariate predictive model in each local neighborhood in brain space-named the searchlight. The classification performance is then reported at the center of the searchlight to build an information map. We extend the searchlight technique to take into account additional voxels that can be considered as a meaningful network; i.e., we define a criterion of multivariate connectivity to identify voxels that are statistically dependent on those in searchlight. We coin the term “connectivity searchlight” for the extended searchlight. Using simulated data, we empirically show improved performance for brain regions with low signal-to-noise ratio and recovery of underlying network structures that would otherwise remain hidden. The proposed methodology is general and can be applied to both functional and structural data. We also demonstrate promising results on a well-known fMRI dataset where images of different categories are presented.\",\"PeriodicalId\":178011,\"journal\":{\"name\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2013.6556464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

使用磁共振成像(MRI)进行脑制图传统上使用体素统计假设检验。这种质量-单变量方法忽略了微妙的空间相互作用。相比之下,探照灯方法在大脑空间的每个局部邻域使用一个多变量预测模型——探照灯。然后在探照灯的中心报告分类性能,以构建信息地图。我们扩展了探照灯技术来考虑额外的体素,这些体素可以被视为一个有意义的网络;也就是说,我们定义了一个多变量连通性的标准来识别在统计上依赖于探照灯中的体素。我们为扩展的探照灯创造了“连接探照灯”这个术语。通过模拟数据,我们从经验上显示了低信噪比的大脑区域的性能得到改善,并恢复了原本隐藏的潜在网络结构。所提出的方法是通用的,可以应用于功能和结构数据。我们还在一个著名的fMRI数据集上展示了有希望的结果,其中呈现了不同类别的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connectivity searchlight: A novel approach for MRI information mapping using multivariate connectivity
Brain mapping using magnetic resonance imaging (MRI) is traditionally performed using voxel-wise statistical hypothesis testing. Such mass-univariate approach ignores subtle spatial interactions. The searchlight method, in contrast, uses a multivariate predictive model in each local neighborhood in brain space-named the searchlight. The classification performance is then reported at the center of the searchlight to build an information map. We extend the searchlight technique to take into account additional voxels that can be considered as a meaningful network; i.e., we define a criterion of multivariate connectivity to identify voxels that are statistically dependent on those in searchlight. We coin the term “connectivity searchlight” for the extended searchlight. Using simulated data, we empirically show improved performance for brain regions with low signal-to-noise ratio and recovery of underlying network structures that would otherwise remain hidden. The proposed methodology is general and can be applied to both functional and structural data. We also demonstrate promising results on a well-known fMRI dataset where images of different categories are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信